MODELCURRICULUM

Name of the Degree Program	:	BSc
(Basic/Hons.) Discipline Core	:	Microbiology
Total Credits for the Program	:	B.Sc. Basic - 136andB.Sc. Hons176
Starting year of implementation	:	2021-22

Program Outcomes:

Competencies need to be acquired by the candidate securing B.Sc.(Basic) or B.Sc.(Hons)

By the end of the program the students will be able to:

- 1. Knowledge and understanding of concepts of microbiology and its application in **pharma, food, agriculture, beverages, nutraceutical industries**.
- 2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance.
- **3**. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.
- 4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.
- 5. Exploring the microbial world and analyzing the specific benefits and challenges.
- 6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.
- 7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- 8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- 9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.
- 10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectuall property rights, biosafety and biohazards.
- **11**. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyze outcomes by adopting scientific methods, there by improving the employability.
- **12.** Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment: Weightage for assessments (in percentage)

Type of Course	Formative Assessment /IA	Summative Assessment
Theory	40%	60%
Practical	40%	60%
Projects	40%	60%
Experiential	40%	60%
Learning		
(Internships/MOO/		
Swayametc.)		

Curriculum Structure for the Undergraduate Degree Program BSc (Basic /Hons.)

Total Credits for the Program:176Starting year of implementation:2021-22Name of the Degree Program:B.Sc. (Basic/Hons.)Microbiology Program Articulation Matrix:

Se mes ter	Title /Name Of the course	Program outcomes that the course addresses (not more than 3per	Pre- requisi te course (s)	Pedagogy##	Assessment\$
	DSC 1T	course)	DUCon	The second redeese	LCCCDC
	DSC-11	and	+2	to	LSSSDC
	MBL101	Understanding of	(Life	Be followed for theory	(NSDC)
	General	Concepts of	Sciences as	And practicals are as	assessment
	Microbiology	microbiology.	One of the	under. Lecturing,	and
	4Credits	2.Learningand	core	Tutorials,	certification
	100Marks	practicing	discipline	Group/Individual	For lab
		Professionals kills	8)	Discussions, Seminars,	Technician or
		In handling		Assignments, Counseling,	Lab assistant
1		microbes.		Remedial Coaching.	Job role
		3.Thorough		Field/Institution/Indust rial	
		Knowledge and		visits, Hands on training,	
		Application of		Case observations,	
		Good laboratory		Models/charts	
		And good		preparations, Problem	
		manufacturing		Solving mechanism,	
		Practices in		Demonstrations, Project	

	DSC-1P MBL101 General Microbiology 2Credits 50Marks	Microbial quality control.	presentations, Experiential Documentation and Innovative methods.	
2	DSC- 2TMBL102 Microbial Biochemistry and Physiology 4Credits 100Marks	Thorough knowledge and understanding of concepts of microbiology and its application in different microbiologica l industries.	The general pedagogy to be followed for theory and practicals are as under. Lecturing, Tutorials, Group/Individual Discussions, Seminars, Assignments, Counseling, Remedial Coaching. Field/Institution/Indust rial	LSSSDC(NS DC) Assessment and certification for lab technician or Lab assistant job role
			visits, Hands on training, Case observations, Models/charts preparations, Problem solving mechanism, Demonstrations, Project presentations, Experiential documentation and Innovative methods.	
	DSC- 2PMBL 102 Microbial Biochemistry and Physiology 2Credits 50Marks			
3	DSC-3T MBL103 Microbial diversity 4Credits 100Marks DSC-3P			

	MBL103 Microbial diversity 2Credits 50Marks		
4	DSC-4T MBL104 Microbial Enzymology and Metabolism 4Credits 100Marks		
	DSC-4P MBL104 Microbial Enzymology and Metabolism 2Credits 50Marks		
	DSC-5T MBL105 Microbial Genetics and Molecular biology 3Credits 100Marks		
5	DSC-5P MBL105 Microbial Genetics and Molecular biology 2Credits 50Marks		
	DSC-6T MBL106 Immunology and Medical microbiology 3Credits 100Marks		
	DSC-6P MBL106 Immunology		

	and		1
	Medical		
	microbiology		
	2Credits		
	50Morka		
	JUNIAIKS		
	DSC		
	-		
	- 7TN		
	BLI		
	07		
	Food and		
	Dairy		
	Microbiol		
	OGV		
	3Credite		
	TOOMarks		
	DSC-		
6	7PMBL107		
	Food and		
	Dairy		
	Microbiolog		
	v		
) 2Credite		
	2Cieulis 50Mortes		
	SUMarks		
	DSC-		
	8TMBL108		
	Industrial		
	Microbiolog		
	y and		
	Bioprocess		
	Technology		
	3Credits		
	100Marks		
	DOC-		
	8PMBL108		
	Industrial		
	Microbiolog		
	y and		
	Bioprocess		
	Technology		
	2Credits		
	50Marks		
	DSC-		
	0TMPI 100		
	Microbial		
	where obtain		
	Genetic		
	Engineering		
	3Credits		
	100Marks		

	DSC-		
	9PMBL109		
	Microbial		
	Genetic		
	Engineering		
	2Credits		
	50Marks		
	DSC-		
	10TMBL110		
	Environme		
	ntal and		
7	Agricultura		
	1		
	Microbiolo		
	gу		
	3Credits		
	100Marks		
	DSC-		
	10PMBL110		
	Environmenta		
	land		
	Agricultural		
	Microbiology		
	2Credits		
	SUMarks		
	DSC-		
	rialand		
	EoronaioM		
	icrobiolog		
	v		
	y ACredits		
	100Marks		
	DSC-12T		
	MRI 112		
	Riccofety		
	Diostics & IDD		
	ACue dite		
	4Credits		
	TOOMarks		
	D00 12T		
	DSC-131		
	MBL 113		
8	Genomics,		
	Proteomics		
	and		
	Metabolomics		
	4Credits		
	100Marks		

	DSC-14T		
	MBL 114		
	Aquatic		
	Microbiology		
	3Credits		
	100Marks		
	1001110		
	DSC-15T		
	MBL 115		
	Microbial		
	Genetic		
	Engineering		
	3Credits		
	100Marks		
	DSC-15P		
	MBL 115		
	Microbial		
	Genetic		
9	Engineering		
	2Credits		
	50Marks		
	DSC-16T		
	MBL 116		
	Environmental		
	and		
	Agricultural		
	Microbiolo		
	gу		
	3 Credits		
	100Marks		
	DSC-		
	16PMBL116		
	Environment		
	alandAgricul		
	turalMicrobi		
	ology2		
	Credits		
	SUMarks		

	DSC- 17TMBL117 Pharmaceutic aland ForensicMicr obiology 4Credits 100Marks		
1 0	DSC- 18TMBL118 Emerging MicrobialT echnologie s 4 Credits 100Marks DSC- 19TMBL119 Extremophy lic Microbes andExtremo lytes 4 Credits 100Marks		
	DSC- 20TMBL120 Molecular Diagnosis, Drug Designing and Advanced Vaccines 3 Credits 100Marks		

Note:

##Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project based learning/ case studies/self-study like seminar, term paper or MOOC.

\$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/Evaluating/Creating).However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

B. Sc., Microbiology (Basic / Hons.)Semester 1

CourseTitle:DSC-1T,MBL101,GeneralMicrobiology						
Total Contact Hours:56	Course Credits:4+2					
Formative Assessment Marks:40%	Duration of ESA/Exam:3Hrs					
Model Syllabus Authors: Curriculum Committee	Summative Assessment Marks:60%					

CoursePre-requisite(s):*Mention only course titles from the curriculum that are needed to be taken by the students before registering for this course.*

CourseOutcomes(COs):

At the end of the course the student should be able to:

(Write 3-7 course outcomes. Course outcomes are statements of observable student actions that serve as evidence of knowledge, skills and value sacquired in this course)

- 1. Thorough knowledge and understanding of concepts of microbiology.
- 2. Learning and practicing professional skills in handling microbes.
- **3.** Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes(POs1-12)

Course Outcomes (COs) /Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
1. Thorough knowledge and understanding of concepts of microbiology												
2.Learning and practicing professional skills in handling microbes												
3. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.												

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course.Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

B.Sc., Microbiology (Basic/ Hons.)Semester 1

Title of the Courses: Course1:DSC-1T,MBL101,General Microbiology Course2:OE1T,MBL301, Microorganisms for Human Welfare Course3:SEC1T,MBL701,Microbiological Methods and Analytical Techniques

Course1:D	OSC-1T, MBL101,	Course 2: 0	OE1T,MBL301,	Course 3: SEC1T,MBL701,		
Genera	l Microbiology	Microo	rganisms for	Microbiological Methods		
		Huma	an Welfare	and		
				Analyt	ical Techniques	
Number	Number of	Number	Number of	Number	Number of lecture	
of	lecture	of	lecture	of	hours/semester	
Theory	hours/semester	Theory	hours/semester	Theory		
Credits		Credits	Credits			
4	56	3	42	1	14	

ContentofCourse1:Theory:DSC-1T,MBL101,General Microbiology	56Hrs
Unit – 1:Historical development of microbiology	14Hrs
 Historical development of microbiology-Theory of spontaneous generation, Biogenesis and Abiogenesis. Contributions of AntonVon Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister and Edward Jenner, Alexander Fleming, Martinus Beijirinck, Segei Winogrodsky, Elei Metechnikoff. Contributions of Indian scientists in the field of Microbiology. Scope of Microbiology. Fossil evidences of microorganisms. Origin of life, primitive cells and evolution of microorganisms. Microcopy- working principle, construction and operation of simple and compound 	
microscopes.	
Unit -2:Staining, sterilization and preservation of microorganisms	14Hrs
Staining: Nature of strains, principles, mechanism, methods and types of staining- Simple, Differential-Gram staining, Acid fast staining, staining of capsule, cell wall,endospore. Sterilization: Principles, types and techniques, Physical, chemical, radiation and mechanical. Preservation of microorganisms: Definition, importance, methods of preservation of microorganism –slant culture, stab culture, soil culture, mineral oil overlaying, glucarel preservation	

Unit–3:Prokaryotic microorganisms:	14Hrs
Overview of prokaryotic cell structure: Size, shape, arrangement. Ultra structure of prokaryotic cell: Bacterial and Archaeal-cell wall and cell membrane. Components external to cell wall- capsule, slime, s-layer, pili, fimbriae, flagella; structure, motility, chemotaxis. Cytoplasmic matrix- Cytoskeleton, ribosome, inclusion granules: Composition and function. Nuclear Materials – Bacterial structure (its differences with the Eukaryotic chromosome); Extra Chromosomal material. Bacterial Endospore - Examples of spore forming organisms, habitats, function, formation and germination. Reproduction in bacteria.	
Unit–4:Eukaryotic microorganisms	14Hrs
Overview of eukaryotic cell: Types of cells; Structure and function of organelles- Cell wall, cell membrane, cytoplasmic matrix, cytoskeleton, endoplasmic reticulum, golgi complex, peroxisomes, lysosomes, vesicles, ribosomes, mitochondria chloroplast and nucleus. Structure and functions of flagella. Reproduction in eukaryotes: A brief account of vegetative, asexual and sexual methods of reproduction	

Course1:Practical: DSC-1P,MBL101,General Microbiology

- 1. Microbiological laboratory standards and safety protocols.
- 2. Operation and working principles of Light/Compound microscope.
- 3. Working principles and operations of basic equipments of microbiological laboratory (Laminar Air Flow Chamber, Autoclave, Hot air Oven, Incubator, pH meter, Spectrophotometer, Colorimeter, vortex, magnetic stirrer etc).
- 4. Demonstration and observations of microorganisms from natural sources under light microscope (Algae, Yeast and Protozoa).
- 5. Study of bacterial motility by hanging drop method.
- 6. Simple staining and negative staining technique
- 7. Differential staining- Gram staining.
- 8. Acid fast staining.
- 9. Structural staining Flagella and capsule.
- 10. Bacterial endospore staining.
- 11. Staining of reserved food materials (granular).
- **12**. Staining of fungi by lactophenol cotton blue.

Suggested Readings:

- 1. A Textbook of Microbiology, R. C. Dubey and D. K. Maheshwari, 1st edition, 1999, S. Chand & Company Ltd.
- 2. Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp.
- 3. Atlas, R.M. 1984. Basic and practical microbiology. Mac Millan Publishers, USA. 987pp.
- 4. Black, J.G. 2008. Microbiology principles and explorations. 7edn. John Wiley and Sons Inc., New Jersey 846 pp.
- 5. Brock Biology of Microorganisms, M.T.Madigan, J.M.Martinko, P. V. Dunlap, D. P. Clark-12th edition, Pearson International edition 2009, Pearson Benjamin Cummings.
- 6. Foundations in Microbiology, K. P. Talaro, 7th International edition 2009, McGraw Hill.
- 7. General Microbiology, Stanier, Ingraham et al, 4th and 5th edition 1987, Macmillan education limited.
- 8. Microbiology An Introduction, G. J.Tortora, B. R.Funke, C. L. Case, 10th ed. 2008, Pearson Education.
- 9. Microbiology- Concepts and Applications, PelczarJr, Chan, Krieg, International ed, McGraw Hill.
- 10. Pommerville, J.C. Alcamo's Fundamentals of Microbiology. Jones and Bartlett
- Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Pub.Sudburry, 835 pp.
- 12. Schlegel, H.G. 1995.General Microbiology. Cambridge University Press, Cambridge, 655 pp.
- 13. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pte. Ltd., San Francisco. 958pp.Woolverton, 7th International, edition 2008, McGraw Hill.

Course2:Theory: OE1T, MBL301, Microorganisms for Human Welfare

Course2:OE1T,MBL 301,Microorganisms for Human Welfare	42Hrs
Unit-1:Food and Fermentation Technology	14Hrs
Fermented Foods–Types, Nutritional Values, Advantages and Health Benefits Prebiotics, Probiotics, Synbiotics and Nutraceuticals Fermented Products: Alcoholic-Beer and whisky; nonalcoholic beverages-coffee and tea; fermented dairy products-yoghurt and cheese; fermented fruit drinks-wine	
Unit-2:Agriculture	14Hrs
Bio-fertilizers and bio-pesticides - types and applications, beneficial microorganisms in agriculture, AM fungi, Mushroom cultivation, Biogas production.	
Unit –3:Biopharmaceuticals	14Hrs
Microbial Drugs–Introduction, Discovery, Antibiotics –Definition, characteristics, Types, Functions. Antibiotic Therapy and Development of Drug Resistance Vaccines–Types, Properties, Functions and Schedules	

Course 3: Theory: SEC 1T, MBL 701, Microbiological Methods and Analytical Techniques

LEARNING OUTCOMES

- Demonstrate skills as per National Occupational Standards(NOS) of "Lab Technician/Assistant" Qualification Pack issued by Life Sciences Sector Skill Development Council-LFS/Q0509,Level3.
- Perform microbiology and analytical techniques. Knowledge about environment ,health, and safety (EHS), good laboratory practices (GLP), good manufacturing practices (GMP) and standard operating procedures(SOP)
- Demonstrate professional skills at work, such as decision making, planning, and organizing, Problem solving, analytical thinking ,critical thinking, and documentation.
- 1. Principles which underlies sterilization of culture media, glassware and plastic ware to be used for microbiological work.
- 2. Principles of a number of analytical instruments which the students have to useduringthestudyandalsolaterasmicrobiologistsforperformingvariouslaboratoryma nipulations.
- **3**. Handling and use of microscopes for the study of microorganisms which are among the basic skills expected from a practicing microbiologist. They also get introduced to a variety of modifications in the microscopes for specialized viewing.
- 4. Several separation techniques which may be required to be handled later as microbiologists.

Course 3: Theory: SEC 1T, MBL701,

Microbiological Methods and Analytical Techniques

SEC1T,MBL701,Microbiological Methods and Analytical Techniques	14Hrs
DIGITALSKILLS:	
The components of digital skills provided by KSHEC, will be followed	
accordingly.	
Microbiological Skills	
Microbiological culture media: Composition, Preparation, Application and	
storage; Ingredients of media. Types- natural and synthetic media, chemically	
defined media, complex media, selective, differential, indicator, enriched and	
enrichment media.	
Isolation and cultivation of microorganisms: Collection of samples, processing of	
samples, serial dilution, technique, Inoculation of samples, incubation and	
observations of microbial colonies.	
Morphological characterization of microorganisms-Colony characteristics,	
Microscopic characters, biochemical / physiological tests or properties and	
identification.	
Sub-culturing of microorganisms and pure culture techniques. Preservation of	
microorganisms.	
Advanced Microscopic Skills: Different types of microscopes - Phase	
contrast,BrightField,DarkField,Fluorescent,ScanningandTransmissionElectron	
Microscopy	
Analytical Skills	
Centrifugation, Chromatography and Spectroscopy, Electrophoresis: Principles,	
Types, Instrumentation, Operation and applications.	

Course 3: Practicals: SEC 1P, MBL 701, Microbiological Methods and Analytical Techniques

- **1.** Methods and practices in Microbiology lab: MSDS (Material Safety and Data Sheet), Good Clinical Practices (GCP), Standard Operating Procedure (SOP), Good Laboratory Practices (GLP), Good Manufacturing Practices (GMP).
- 2. Usage and maintenance of basic equipments of microbiology lab: Principles, calibrations, and SOPs of balances, pH meter, autoclave, incubators, laminar air flow (LAF) and biosafety cabinets, microscopes, homogenizers, s tirrers.
- 3. Preparation of bacterial culture media
- 4. Preparation of fungal culture media
- 5. Preparation of algal culture media
- 6. Isolation and cultivation of bacteria, actinobacteria, fungi and algae
- 7. Identification and characterization of bacteria, actinobacteria, fungi and algae.
- 8. Biochemical and physiological tests for identification of bacteria
- 9. Separation of biomolecules by paper / thin layer chromatography.
- 10. Demonstration of column chromatography.
- 11. Preparation of permanent slides (bacteria, fungi and algae).
- 12. Procedures for documentation, lab maintenance, repair reporting.

Pedagogy:

The general pedagogy to be followed for theory and practicals are as under. Lecturing, Tutorials, Group/Individual Discussions, Seminars, Assignments, Counseling,RemedialCoaching.Field/Institution/Industrialvisits,Handsontraining,Caseobse rvations, Models/charts preparations, Problem solving mechanism, Demonstrations, Project presentations, Experiential documentation and Innovative methods.

Active learning as per LSSSDC (NSDC)LFS/Q0509guidelines, at skill training Level 3. Case studies about application of microbial biomolecules in various industries. Seminar on topics of microbial biochemistry.

FormativeAssessment:40%	
Assessment Occasion/type	Weightage in Marks
IA(2Tests)	20%:20Marks
Assignments/Visits	10%:10Marks
Seminars/Group Discussion	10%:10Marks
Total	40%:40Marks

Date	CourseCo-ordinator	SubjectCommitteeChairperson
14.09.2021	SpecialOfficer,KSHEC	ViceChancellor,GulbargaUniversit
	(Dr.Prasannakumar)	y (Prof.DayanandAgsar)

B. Sc., Microbiology (Basic / Hons.)Semester 2

Title of the Courses: Course 1: DSC-2T, MBL 102, Microbial Biochemistry and Physiology Course2: OE-2T, MBL 302, Environmental Microbiology and Human Health

Course1: DSC	C-2T,MBL102,	Course 2: (DE-2T,MBL 302,
Microbial Biochemistry and		Environmental Microbiology and	
Physiology		Hum	an Health
Number of Theory	Number of lecture	Number of Theory	Number of lecture
Credits	hours/semester	Credits	hours/semester
4	56	3	42

Content of Course:DSC-2T,MBL102, Microbial Biochemistry and Physiology	56Hrs
Unit-1Biochemical Concepts	14Hrs
Basic Biochemical Concepts: Major elements of life and their primary characteristics, atomic bonds and molecules – bonding properties of carbon, chemical bonds- covalent and non covalent, Hydrogen bonds and Vander Waal Forces. Biological Solvents: Structure and properties of water molecule, Water as an universal solvent, polarity, hydrophilic and hydrophobic interactions, properties of water, Acids, bases, electrolytes, hydrogen ion concentration, pH, buffers and physiological buffer system, Handerson–Hasselbatch equation.	
Unit- 2 Macromolecules	14Hrs
Carbohydrates: Definition, classification, structure and properties. Amino acids and proteins: Definition, structure, classification and properties Lipids and Fats: Definition, classification, structure, properties and importance of lipids; fatty acids: types and classification, Vitamins, Definition, structure, properties and importance of chlorophyll, cytochromes and hemoglobin.	
Unit-3Microbial growth and nutrition	14Hrs
Microbial Growth: Definition of growth, Growth curve, phases of growth, Influence of environmental factors on growth, generation time and specific growth rate. Synchronous growth, Continuous growth (chemostat and turbidostat), Diauxic growth.	

Measurement of Growth: Direct Microscopic count - Haemocytometer; Viable count, Membrane filtration; Electronic Coulter Counting method; Measurement of cell mass; Turbidity measurements- Nephelometer and spectrophotometer techniques. Growth Yield (definition of terms). Microbial Nutrition: Microbial nutrients, macro and micronutrients, classification of organisms based on nutritional requirements. MembraneTransport:Structureandorganizationofbiologicalmembranes,Typesofcellul ar transport - passive, facilitated, active, group translocation, membrane bound protein transport system, carrier models, liposomes, ion channels, Na ⁺ K ⁺ -ATPase.	
Unit-4: Bioenergetics, Respiration and Photosynthesis	14Hrs
 Bioenergetics: Free energy, Enthalpy, Entropy, Classification of high energy compounds, Oxidation reduction reactions, equilibrium constant, Redox potential, Laws of thermodynamics, Energy coupling reactions, Exothermic and Endothermic reactions. Respiration: Glycolysis, TCA cycle and electron transport chain, oxidative and substrate level phosphorylation. Anaerobic respiration, Fermentation(homo and heterolactic fermentation) Microbial Photosynthesis: Photosynthetic pigments in prokaryotes. Types of Bacterial photosynthesis– Oxygenic and Anoxygenic: Photophosphorylation-Cyclic and Non- cyclic Light reaction, Dark Reaction (CO₂ fixationpathways)-Calvincycle. 	

Course 1: Practicals: DSC-2P, MBL 102, Microbial Biochemistry and Physiology

- 1. Preparation of normal and molar solutions
- 2. Calibration of pH meter and determination of pH of natural samples
- 3. Preparation of buffer solutions (any 4)
- 4. Qualitative analysis of carbohydrates
- 5. Qualitative analysis of amino acids and proteins
- 6. Qualitative analysis of lipids
- 7. Estimation of reducing sugars by DNS method
- 8. Estimation of protein by Lowry's/Biuret method
- 9. Determination of saponification values and iodine number of lipids/fattyacids
- 10. Determination of bacterial growth by turbidometric method
- 11. Effect of pH, temperature and salt concentration on bacterial growth
- 12. Demonstration of aerobic and anaerobic respiration in microbes

Text Books/References

- 1. BoyerR.(2002), Conceptsin Biochemistry2ndEdition, Brook/Cole, Australia.
- 2. Caldwell, D.R. (1995) Microbial Physiology and Metabolism. Brown Publishers.
- 3. FelixFranks,1993;ProteinBiotechnology,HumanaPress,New Jersey.
- 4. Harper, 1999; Biochemistry, McGrawHill, NewYork.
- 5. LodishH,T.Baltimore,A.BerckB.L.Zipursky,P.Mastsydaire andJ.Darnell.(2004)-
- Moat A. G., Foster J.W. Spector. (2004), Microbial Physiology 4th Edition Panama BookDistributors.
 Molecular Coll Dialogue Scientific American Decke. Inc. Neuropeter
- MolecularCellBiology,ScientificAmericanBooks, Inc.Newyork.
- $\label{eq:construction} \textbf{7. Nelson and Cox, 2000; Lehninger Principles of Biochemistry, Elsevier Publ.}$
- 8. Palmer T. (2001), Biochemistry, Biotechnology and Clinical Chemistry, HarwoodPublication,Chichester.
- 9. StryerL, 1995; Biochemistry, Freemanand Company, New York.
- 10. Voet&Voet,1995;Biochemistry,JohnWileyandSons,NewYork.

Course 2: Theory: OE- 2T, MBL 302, Environmental Microbiology and Human Health

Course 2 :Theory: OE- 2T, MBL 302, Environmental Microbiology and Human Health	42Hrs
Unit–1:Soil and Air Microbiology	14 Hrs
Soil and Air as a major component of environment. Types and properties of soil. Distribution of microorganisms in soil and air. Major types of beneficial and harmful microorganisms in soil and air.	
Unit –2:WaterMicrobiology	14 Hrs
Water as a major component of environment. Types and uses of water Microorganisms in different water bodies. Standard qualities and analysis of drinking water	
Unit –3:Microbial Diseases and Control	14 Hrs
Public health hygiene and communicable diseases. General Account of Microbial infections - Airborne, water borne and Food borne- Source, Mode of Transmission, Symptoms, Prevention and control. Surveillance of microbial infections.	

Text Books/References

- 1. ATextbookofMicrobiology,R.C.DubeyandD.K.Maheshwari,1stedition,1999,S.Cha nd&Company Ltd.
- 2. Alexopoulos, C.J., Mims, C.W., and Blackwell, M.2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp.
- 3. Atlas, R.M. 1984. Basic and practical microbiology. MacMillan Publishers, USA. 987 pp.
- 4. Black, J.G. 2008. Microbiologyprinciples and explorations. 7edn. John Wiley and Sons In c., New Jersey 846pp.
- 5. BrockBiologyofMicroorganisms,M.T.Madigan,J.M.Martinko,P.V.Dunlap,D.P.Clar k-12thedition, PearsonInternational edition2009,PearsonBenjaminCummings.
- ${\it 6.} \ \ Foundations in Microbiology, K.P. Talaro, 7 th International edition 2009, McGraw Hill.$
- 7. GeneralMicrobiology,Stanier,Ingrahametal,4thand5thedition1987,Macmillaneduca tionlimited.International,edition2008,McGrawHill.
- 8. Microbiology– AnIntroduction, G.J. Tortora, B.R. Funke, C.L. Case, 10thed. 2008, Pearson Education.
- 9. Microbiology-ConceptsandApplications,PelczarJr,Chan,Krieg,International ed,McGrawHill.
- 10. Pommerville, J.C. Alcamo's Fundamentals of Microbiology. Jones and Bartlett
- 11. Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 7thPub..Su dburry, 835pp.
- 12. Schlegel,H.G.1995.GeneralMicrobiology.CambridgeUniversityPress Cambridge,655pp.
- 13. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology9thed. Pearson Education P te.Ltd., San Francisco. 958 pp.

Pedagogy:

The general pedagogy to be followed for theory and practicals are as under.

Lecturing, Tutorials, Group/Individual Discussions, Seminars, Assignments, Counseling,RemedialCoaching.Field/Institution/Industrialvisits,Handsontraining,Caseobse rvations, Models/charts preparations, Problem solving mechanism, Demonstrations, Project presentations, Experimental documentation and Innovative methods.

Formative Assessment:40%	
Assessment Occasion/type	Weightage in Marks
IA (2 Tests)	20%:20Marks
Assignments/Visits	10%:10Marks
Seminars / Group Discussion	10%:10Marks
Total	40%:40Marks

Date	Course Co-ordinator
14.09.2021	Special Officer, KSHEC
	(Dr.Prasanna kumar)

Subject Committee Chairperson Vice Chancellor, Gulbarga University (Prof. Dayanand Agsar)