MANGALORE UNIVERSITY

BOTANY

(CORE, ELECTIVE AND SKILL COURSES)

SYLLABUS FOR

B.Sc. UNDER GRADUATE (UG) PROGRAMME

UNDER SEP SCHEME

With effect from

Academic Year

2024-25

Botany

Programme Outcome:

- Students will be proficient to comprehend classification, morphology, anatomy, and physiology of various groups of plants.
- Students will be able to understand the contribution of botany for human welfare with potential uses of plants along with their conservation and sustainable development.
- Students will be enriched by various skills related to Gardening and Floriculture, preparation of biofertilizers, mushroom cultivation and ethnobotanical knowledge.
- Students will be able to understand and relate physical features of the environment to the structure of population, community, ecosystem, and sustainable conservation strategies.

		Exam			Marks		No of
	Semester-wise Course Topics	Teachi ng hrs/ week	duration (hrs)	I.A	Exam	Total	Credits
SEMES	ΓER – I						
Group I	BSCBOC 101: Diversity of Microbes, Algae and Fungi(T)	4	3	20	80	100	03
	BSCBOP 102: Diversity of Microbes, Algae and Fungi (P)	4	3	10	40	50	02
SEMES'	FER – II						
Group I	BSCBOC 201: Diversity of non-flowering plants and Plant anatomy (T)	4	3	20	80	100	03
	BSCBOP 202: Diversity of non-flowering plants and Plant anatomy (P)	4	3	10	40	50	02
SEMES'	ΓER – III						
Group I	BSCBOC 301: Angiosperm Morphology and Reproductive Botany (T)	4	3	20	80	100	03
	BSCBOP 302: Angiosperm Morphology and Reproductive Botany (P)	4	3	10	40	50	02
Group II	BSCBOCE 301: Elective Course: Medicinal Botany	2	2	10	40	50	02
SEMES'	ΓER – IV						
Group I	BSCBOC 401: Plant Taxonomy and EconomicBotany (T)	4	3	20	80	100	03
	BSCBOP 402: Plant Taxonomy and EconomicBotany (P)	4	3	10	40	50	02
Group II	BSCBOCE 401: Elective Course: Gardening and Nursery Techniques	2	2	10	40	50	02
	BSCBOCS401: Skill Paper 1: Floriculture	2	2	10	40	50	02
SEMES'	$\Gamma ER - V$		1				
	BSCBOC 501: Ecology and Conservation Biology (T1)	3	3	20	80	100	03
Group I	BSCBOC 502: Genetics, Cell and Molecular Biology (T2)	3	3	20	80	100	03
	BSCBOP 503: Ecology and Conservation Genetics, Cell and Molecular Biology (P)	4	3	10	40	50	02
	BSCBOCS501: Skill Paper 2: Mushroom Cultivation Technology	2	2	10	40	50	02
SEMES'	ΓER – VI						
	BSCBOC601: Plant Physiology (T1)	3	3	20	80	100	03
	BSCBOC 602: Plant Breeding and Biotechnology(T2)	3	3	20	80	100	03
Group I	BSCBOP 603: Plant Physiology& Plant Breeding and Biotechnology (P)	4	3	10	40	50	02
	BSCBOCS601: Skill Paper 3: Seed Technology	2	2	10	40	50	02
	T= Theory, P=Practical				Total Cr	edits	46

MANGALORE UNIVERSITY BOTANY SYLLABUS FOR UG PROGRAMS w. e. f. 2024-25

DISCIPLINE CORE PAPERS (DSC)

Sl. No.	Semester Details	Subject	
1	Semester I	Diversity of Microbes, Algae and Fungi	
2	Semester II	Diversity of non-flowering plants and Plant Anatomy	
3	Semester III	Angiosperm Morphology and Reproductive Botany	
4	Semester IV	Plant Taxonomy and Economic Botany	
5	Semester V	Ecology and Conservation Biology	
		Genetics, Cell, and Molecular Biology	
6	Semester VI	Plant Physiology	
		Plant Breeding and Biotechnology	

ELECTIVE and SKILL PAPERS

Sl No. Semester		Subject: Botany	Credits
	Details		
1	Semester III Elective	Medicinal Botany	02
2	Semester IV Elective	Gardening and Nursery Techniques	02
	Semester IV Skill paper 1	Floriculture	02
3	Semester V Skill paper 2	Mushroom Cultivation Technology	02
4	Semester VI Skill paper 3	Seed Technology	02

SEMESTER – I Diversity of Microbes, Algae and Fungi – Theory

Course Objectives:

- To explore and identify microbes, lower plants and to gain adequate knowledge on comparative account of these organisms
- To impart knowledge about the occurrence, distribution, structure and life history of microbes, lower plants such as algae, fungi and lichens,
- To acquaint students with a wide spectrum of plant diseases, cause, symptoms, and control measures

Course Outcome: After completion of the course, the students will be able to;

- Understand the diversity of microbes in nature.
- Know the diversity of algae, fungi, lichens and their uses.
- Identify and classify algae and fungi.
- Develop practical skills in staining techniques and slide preparation.
- Identify plant disease symptoms and management techniques.

Unit	Topics	Teaching Hours
Ι	Introduction to Botany: Branches and scope, Major historical developments in	12
	Botany including contributions of Indian Botanists (Sir J. C. Bose, P.	
	Maheshwari, B.G.L. Swamy, E.K. Janaki Ammal and M. S. Swaminathan)	
	Career opportunities in Botany.	
	Five kingdom and Three domain systems of classification of organisms with	
	examples	
	Viruses: Discovery, General characters -living and non-living features,	
	Classification based on hosts and nature of genetic material. Ultra structure and	
	multiplication of TMV and T4 Phage. A brief account of Viroid's and Prions.	
	Phytoplasma: General characters and structure.	
	Bacteria: Discovery, Types based on cellular morphology, flagellation and mode	
	of nutrition. Classification (Bergey's manual)'- a brief account, Ultra structure	
	of a Bacterial cell. Reproduction: binary fission and endospore formation.	
	Genetic recombination in bacteria - conjugation, transformation and transduction	
	(generalized type), Economic importance of Bacteria.	
II	Algae -1: Occurrence, thallus organization and general methods of	12
	reproduction with examples. Types of life cycles in algae (only schematic	
	representations) with an example to each type: haplontic, diplontic,	
	isomorphic, heteromorphic and triphasic. Pigmentation in algae, Fritsch's	
	classification of algae up to the level of classes with examples.	
	Myxophyceae/Cyanophyceae: Ultra structure of cyanobacterial cell and	
	heterocyst. Structure and reproduction of Nostoc.	
	Chlorophyceae: Thallus structure and reproduction of Oedogonium	
	Bacillariophyceae: Types of diatoms with examples- Pennales and Centrales.	
	Thallus structure and reproduction of a Pennate diatom (Pinnularia)	

III	Algae-2:	12
	Phaeophyceae: Thallus structure and reproduction of Sargassum	
	Rhodophyceae: Thallus structure and reproduction of Polysiphonia.	
	Economic importance of algae: Useful aspects- food, SCP, industrial products,	
	medicine, sewage treatment, bio-fertilizers, pollution indicators and energy source.	
	Harmful aspects- algal blooms, algal toxins, and parasitic algae.	
	Fungi: Salient features, occurrence, mycelial organization- prosenchyma, pseudo	
	parenchyma, rhizomorph and sclerotium. General methods of reproduction with	
	example. Alexopoulos system of classification up to the level of classes with examples.	
	Thallus structure and reproduction of Rhizopus (Zygomycetes), Penicillium	
	(Ascomycetes) and Agaricus (Basidiomycetes).	
	Economic importance of Fungi: food value, industrial products, medicinal products,	
	bio control agents and Fungal toxins.	
VI	Plant Pathology: Concept of a plant disease, types of plant diseases based on cause-	12
	infectious and non-infectious. Major groups of phytopathogenic organisms, Disease	
	cycle, General symptoms of plant diseases caused by phytoplasma, virus (Katte disease	
	of Cardamom), bacteria (Bacterial blight of paddy) and fungi (Stem bleeding disease of	
	coconut) with examples. Methods of disease management.	
	Mycorrhizae: definition, types - ecto, endo (VAM) and ectendomycorrhizae,	
	Ecological and economic significance of mycorrhizae.	
	Lichens: Classification- asco and basidiolichens. Morphological types with examples-	
	crustose, foliose and fruticose. Internal structure of thallus - homeomerous and	
	heteromerous types. Structure of fruiting bodies - soredium, isidium, apothecium and	
	perithecium, Economic importance of lichens.	
	Total	48 hrs

REFERENCE BOOKS:

- 1. SURESH NARAYAN AND PULLAIAH, 2010, **EMINENT INDIAN BOTANISTS** PAST AND PRESENT, REGENCY PUBLICATIONS, NEW DELHI.
- 2. DUBEY, R. C., AND MAHESHWARI, D. K., 2009, A TEXT BOOK OF MICROBIOLOGY, S CHAND PUBLISHERS.
- 3. SINGH, PANDE AND JAIN, 2015, A TEXT BOOK OF BOTANY, RASOGIPUBLICATIONS
- 4. DEY S. N. AND P. S. TRIVEDI. 1977. A TEXT BOOK OF BOTANY VOL IVIKAS.
- 5. GANGULEE, DAS AND DATTA 2002, COLLEGE BOTANY VOL II NCBA (P)LTD
- 6. SUNDARA RAJAN S., 2009, COLLEGE BOTANY VOLUME 1, HIMALAYAPUBLICATIONS
- 7. KUMAR H. D. AND H.N. SINGH. 1996. A TEXT BOOK OF ALGAE, EAST WESTPRESS.NEW DELHI.
- 8. PELCZAR M. J., E.C.S CHAN AND N. R. KRIEG. 2008. MICROBIOLOGY 5TH EDITION. MC GRAWHILL.
- 9. PUROHIT S. S 1989, VIRUSES, BACTERIA AND MYCOPLASMAS, AGROBOTANICALPUBL.
- 10. SMITH G. M. 1955. **CRYPTOGAMIC BOTANY VOL I.** ALGAE AND FUNGI. MCGRAW HILL BOOK CO. INC. 2NDEDITION.
- 11. SMITH K. M 1990. PLANT VIRUSES 6TH EDITION UNIVERSAL BOOK STALL NEWDELHI.
- 12. VASHISTHA B.R., SINHA A. K. AND SINGH V.P. 2004. BOTANY FOR DEGREE STUDENTS

SEMESTER – I Diversity of Microbes, Algae and Fungi –Practical

Practical No.	Title of practical exercise/experiment
1	Microscopy technique: Study of compound and Dissection microscopes – parts, working principle, handling and preparation of temporary mountings
2	Microscopic observation of Bacterial cells by simple staining (Positive-Crystal violet, Negative- Nigrosine or Indian Ink) Differential staining of Bacteria - Gram's staining.
3	Study of thallus structure of Nostoc, Oscillatoria and Scytonema
4	Study of thallus structure of Volvox, Oedogonium and Cladophora
5	Study of thallus and reproductive structures of <i>Chara</i> and structures of <i>pennate Diatoms</i>
6	Study of thallus and reproductive structures of Sargassum and Polysiphonia
7	Study of vegetative and reproductive structures of Penicillium, Rhizopus and Puccinia
8	Study of symptoms, causative organism and control measures of banana bunchy top disease, citrus canker and Root Knot of brinjal, with the help of specimens/photograph.
9	Study of symptoms, causative organism and control measures of Koleroga of areca nut, Blast disease of rice and Rust of coffee
10	Study of Lichens- morphological types, internal structure and reproductive structures
11	Study of local diversity of algae/fungi and preparation of an inventory with photographs/microphotographs (any five not mentioned in practical syllabus)
12	Listing and Study of common fungal/bacterial/viral diseases of local crop plants/plantation crops (any five not mentioned in practical syllabus)

Mangalore University B.Sc. I Semester -Practical Examination Diversity of Microbes, Algae and Fungi Question paper and Scheme of evaluation

	Time: 3hrs.	Batch	Date	Time:am/pm	Max. Marks: 40
1.	Prepare a stain	ed slide of spec	cimen A. Sketch, labe	l and identify with reasons.	Leave the
	preparation for	r inspection			06
2.	Identify B & C	c giving reason	8		3+3 =06
3.	Identify D & F	E with reasons a	and labeled sketches		3+3 =06
4.	Prepare a stain	ed slide of the	given bacterial sample	e F .	
	Show the prep	aration to the e	xaminer and write the	procedure	03
5.	Sketch, label a	nd identify the	slides G, H & I with	reasons	3+3+3=09
6.	Record Submi	ssion and Field	Notes		7 + 3 = 10

			Prep. SkId Cl Rea	Reg. No. of Candidates
	А		2 11/2 1'/2 1'/2 11/2 = 6	Assigned
1				
	п		Id. Reasons	
2	В		$1 \qquad 2 \qquad = 3 \text{ each}$	
2			*Sketch and Classification	Dec Marsh Alexandered
	C		not required	<u>Reg. No. of Absentees:</u>
			Id* Sk. reasons.	
	D		$\frac{1}{2}$ 1 $\frac{11}{2}$ = 3 each	
				Total examined:
3	F		*Classification not	<u> </u>
	Е		required	
4	F		Prep - 1	Name and Signature of
			Procedure – 2	Examiners:
	G			1 Internal
			Skid Cl Rea	1. Internat
5	H		$1 \frac{1}{2} \frac{1}{2} I = 3 \text{ each}$	
	т			
	1			
		Record with Field report	10	2. External
6		-		

Instruction to Examiners:

A - Any algal specimen

B and **C**- One algal and one fungal specimen

D and E- Any Pathological specimen/Morphological types of lichens

F - Bacterial culture/curd sample/root nodule suspension

G, H and I- Slides (Lichen/Algae/Fungi (one each)

SEMESTER – II

Diversity of non-flowering plants and Plant anatomy

Course objectives:

- To study the structure and function of various tissues and their location in the plant body
- To provide relevant information about Pteridophytes and Gymnosperms along with their evolutionary history, their phylogenetic relationships and fossil wealth of the world and economic importance of selected forms.
- > To ascertain the importance of fossilization to relate life forms of earlier era

Course Outcome:

On completion of this course, the students will develop the following skills:

- To identify and classify non-flowering plants.
- Will gain basic knowledge of GTS and plant fossils.
- Observation of variations that exist in the internal structure of various parts of a plant and among different plant groups in support of the evolutionary concept.
- Skill development for the proper description of internal structure using botanical terms, their identification and further classification.
- Induction of the enthusiasm towards the internal structure of locally available plants.

Unit	Topics	Teaching			
		Hours			
Ι	Plant Histology and Anatomy:	12			
	Introduction to tissues, general classification of tissues.				
	Meristematic tissues: definition, classification based on origin, function, and				
	position. Theory of shoot organization - tunica corpus theory, Theory of root				
	organization - histogen theory.				
	Permanent Tissues: simple permanent tissues - structure, types and functions of				
	parenchyma, sclerenchyma, and collenchyma. Complex permanent tissues -				
	structure, composition and functions of xylem and phloem.				
	Secretory tissues: Glandular trichomes, nectars, glands, laticifers and resin ducts.				
	Primary anatomy of dicot and monocot root, stem, and leaf. Normal secondary				
	growth in dicot stem and root.				
II	Bryophytes:	12			
	Occurrence, General characteristics, Rothmaler's classification up to the level of				
	classes with examples. General life cycle of bryophytes.				
	Thallus morphology, anatomy, and reproduction of Riccia, Anthoceros and				
	Funaria.				
	Evolution of sporophytes and gametophytes in bryophytes - theories of				
	progressive sterilization and simplification. Ecological importance of				
	bryophytes.				
ł					

III	Pteridophytes:Occurrence, General characteristics, G. M. Smith's classification up to thelevelof classes with examples. General life cycle of pteridophytes.Morphology, anatomy and reproduction in <i>Psilotum, Equisetum</i> and <i>Pteris</i> Origin of pteridophytes, Stelar variations in pteridophytes, Heterospory andseed habit. Economic importance of pteridophytes.	12
IV	 Gymnosperms: Occurrence, Salient features, Sporne's system of classification up to the level of classes with examples. Morphology, anatomy, and reproduction in <i>Cycas</i> and <i>Gnetum</i>. Economic importance of Gymnosperms. Palaeobotany: Introduction, significance of fossils, Geological time scale and Evolution of plant groups, Types of plant fossils – compressions, impressions, incrustations, petrification with examples. Fossil dating- direct and indirect. Fossil bryophytes, Fossil Pteridophytes- <i>Rhynia</i> – Morphology of sporophyte. Fossil Gymnosperms- <i>Cycadeoidea</i>- Morphology. 	12
	Total	48 hrs

REFERENCE BOOKS

- 1. B.P. Pandey, 2000: Simplified course in Botany. S. Chand Publications
- 2. Sundara Rajan, S, 2011. College Botany Vol. 3. Himalaya Publishing House.
- 3. Kumaresan and A. Reginald, 2013. Pteridophytes, Gymnosperms and Paleobotany, Saras Publications.
- 4. P. C. Vashishta, 2013. Text Book of Gymnosperms. S. Chand Publishers
- 5. Johri B. M. 2015. Embryology of Angiosperms. Springer Publications.
- 6. Sambamurthy, AVSS., 2005. Text Book of Bryophytes, Pteridophytes, Gymnosperms and Palaeobotany. JK International Publishers.

SEMESTER – II Diversity of Non-Flowering Plants and Plant Anatomy – Practical

Practical	Title of exercise /experiments
No.	
1	Study of structure and reproduction of Riccia, Anthoceros and any moss
2	Study the morphology, anatomy, and reproductive structure of <i>Selaginella</i> and <i>Equisetum</i>
3	Study the morphology, anatomy, and reproductive structure of <i>Pteris</i> and <i>Marselia</i>
4	Study the morphology, anatomy, and reproductive structure of Cycas
5	Study the morphology, anatomy, and reproductive structure of <i>Pinus</i>
6	Study the morphology, anatomy, and reproductive structure of <i>Gnetum</i> Study of plant fossils, and examples of Pteridophyte and Gymnosperm fossils included in the syllabus, with the help of slides / photographs.
7	Study of simple, complex permanent tissue and secretory tissues
8	Anatomy of dicot and monocot stem
9	Anatomy of dicot and monocot root
10	Anatomy of old stem and root of dicot (Normal secondary growth)
11	Anatomy of dicot and monocot leaf
12	Study of local diversity of bryophytes / pteridophytes/Gymnosperms and preparation of an inventory with photographs to be recorded in Record book.

Mangalore University B.Sc. II Semester - Practical Examination Diversity of Non-Flowering Plants and Plant Anatomy Question paper and Scheme of evaluation

Time: 3 hrs. Batch..... Date..... Time... am/pm Max. Marks:40

1. Prepare a temporary stained section of the material **A**. sketch, label and identify withreasons. Leave the preparation for inspection 06

- 2. Identify **B** and **C** giving reasons 3+3=06 3. Write critical notes on **D** and **E** with labelled sketches 3+3=06
- 4. Sketch, label and identify with reasons the slides **F**, **G**, **H** & 3+3+3=12 7+3=10
- 5. Record with field report

1	Δ		Pre 2	p. Skl	$\begin{bmatrix} d \\ c \end{bmatrix}$	Rea $\frac{1}{2}$ $\frac{1}{2} = 6$	Reg. No. of Candidates Assigned
-	B		Id 1	R 2	ea 2 =	= 3 each	
2	С		Ske not	etch an requir	d Clas ed	sification	
3	D		Id $\frac{1}{2}$	SkCr 1	t.Nts. 1½	= 3 each	Reg. No. of Absentees:
	Е		required			UL	
	F						Total examined:
	G		Sk	Id	Cl	Rea	
4	H		1	1⁄2	1⁄2	1 = 3each	Name and Signature of Examiners:
							1. Internal
	Ι						
5		Record with Field report	10				2. External

Instruction to Examiners:

A from dicot or monocot stem/root

B and **C** one specimen each from Bryophyta and Gymnosperms

D and **E** from Pteridophyta

F, G, H and I - one slide each from Histology, Bryophyta, Pteridophyta and Paleobotany/Gymnosperms

SEMESTER –III

Angiosperm Morphology and Reproductive Botany - Theory

Course objectives:

- > To study the morphological variations & modifications in vegetative and floral plants
- > To study the reproductive methods and life cycle of angiosperms
- > To understand the steps involved in embryogenesis in plants.

Course Outcome: On completion of this course, the students will develop the following skills:

- > Observation and classification of the floral variations in different plants.
- > Able to understand the various reproductive methods and the life cycle of flowering plants
- > Observation and classification of the embryological variations in angiosperms.
- > Enthusiasm to understand the evolution based on various methods of reproduction.

Unit	Торіс	Teaching	
		Hrs	
Ι	Morphology of Vegetative structures	12	
	Parts of a typical flowering plant, diversity of plant forms – Herbs, Shrubs, Trees,		
	Climbers; annuals, biennials, and perennials. Morphology of vegetative organs: Root:		
	Characteristics, functions, regions of root, types – tap and adventitious, modification		
	of root for storage, mechanical support, and vital functions. Stem: Characteristics,		
	functions, modification – underground, sub aerial and aerial. Leaf: Parts of typical		
	leaf, venation and modifications of leaf, Phyllotaxy.		
II	Morphology of reproductive structures	12	
	Inflorescence: Racemose, cymose and special types. Flower: Definition, parts of a		
	typical flower, forms of thalamus, androphore, gynophore, gynandrophore, insertion		
	of floral whorls on the thalamus (hypogyny, perigyny and epigyny), structure,		
	function and modification of calyx, corolla, aestivation, androecium and variations		
	gynoecium and its variations, placentation.		
ш	Ronroductive Rotony I		
111	Reproductive Dotany 1	14	
	Introduction, Scope and contributions of Indian embryologists: P. Maheshwari, B G		
	L Swamy.		
	Microsporangium: Morphology and Anatomy of the mature anther; Anther wall		
	layers; Tapetum -types, structure and functions; sporogenous tissue.		
	Microsporogenesis - Microspore mother cells, microspore tetrads and their types;		
	structure of mature pollen; Pollinia. Microgametogenesis - structure and		
	development of male gametophyte. Pollen embryosac (Nemec phenomenon).		
	Megasporangium – Ovule and types of ovules - Anatropous, Orthotropous,		
	Amphitropous, Campylotropous, Detailed Structure of Orthotropous ovule.		
	Megagametogenesis -Female gametophyte/embryosac - tenuinucellate and		

	crassinucellate; monosporic - Polygonum type (in detail), bisporic – Allium type, tetrasporic - Fritillaria type (Just mentioning the types in brief). Structure of mature	
	7-celled embryo sac.	
IV	Reproductive Botany II	12
	 Pollination: Definition, self and cross-pollination and their types, contrivances for self and cross-pollination; types of pollination based on agents and their characteristic features. Fertilization: Steps, process and significance of double fertilization. Significance of double fertilization, Post fertilization events. Endosperm – Types and their biological importance. Free nuclear (<i>Cocos nucifera</i>), cellular (<i>Cucumis</i>), helobial types. Ruminate endosperm. Embryogenesis: Dicot (<i>Capsella bursa-pastoris</i>) and Monocot (<i>Najas</i>) embryo development. 	
	Structure of Dicot and Monocot seed.	
	Fruit: Types of fruits. Fruit and Seed dispersal strategies.	
	Total	48 hrs

References:

Bhojwani S.S/Bhatnagar S.P. & Dantu P.K The Embryology of Angiosperms, 6th Edition; Vikas Publishing House, 2015

Pandey S. N. A Textbook of Botany: Angiosperms - Taxonomy, Anatomy, Embryology and Economic Botany.

Bhojwani. S S. Anatomy, Embryology and Elementary Morphogenesis. Textbook of embryology of Angiosperms. DayaBooks, New Delhi.

Patil, C. D and Gauri M Rane; Morphology of Angiosperms. Published 2022.

Bhojwani and Bhatnagar, Introduction to Embryology of Angiosperms –Oxford & IBH, Delhi Bhojwani Sant Saran, 2014. Current Trends in the Embryology of Angiosperms, Woong-Young Soh,Springer Netherlands,

Eames A. J. - Morphology of Angiosperms - Mc Graw Hill, New York.

Raghavan, V., 2000. Developmental Biology of Flowering plants, Springer, Netherlands.

Saxena M. R. – Palynology – A treatise - Oxford & I. B.H., New Delhi.

Nair P. K. - Pollen Morphology of Angiosperms - Scholar Publishing House, Lucknow

Johri B. M. 2015. Embryology of Angiosperms. Springer Publications.

Shukla A. K. 1999. Biology of Pollen. Atlas Books and Periodicals.

Maheshwari P. 1950. An introduction to the Embryology of Angiosperms. TMH Ed.

Dwivedi J. N. 1990. Embryology of Angiosperms, 2nd Edition. Rstogi & Co. Meerut.

Online Resources: https://onlinecourses.nptel.ac.in/noc19_bt17/preview

SEMESTER - III

ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY – PRACTICAL

Practical No.	Title of exercise /experiments
1	Morphology and modification of root
2	Morphology and modification of stem
3	Study of inflorescences
4	Study of fruits
5	Study of flower and its parts; epigynous, perigynous and hypogynous flowers
6	Pollination types and seed dispersal mechanisms (including appendages - aril and caruncle)using photographs and/ specimens).
7	a. Structure of anther (young and mature) using permanent slides.
	b. Types of placentation and types of ovules (anatropous, orthotropous, campylotropous) usingpermanent slides.
8	a. Estimation of pollen viability (in vitro method) by hanging drop method.
	b. Pollen grain structure – Fresh and acetolyzed, showing ornamentation and aperture (slides/photographs/fresh)
9	Female gametophyte: Polygonum (monosporic) type of Embryo sac Development (Permanent slides/photographs). Ultrastructure of mature egg apparatus cells through electron micrographs.
10	Dissection and mounting of the embryo from developing seeds (monocot and dicot). Study of suspensor through electron micrographs
11&12	Mini project: Mini project work in groups of 2-3 students/individual, from the following list.
	This is to be recorded in the practical record book.
	 i. Leaf morphology (Monocot and Dicot) types and phyllotaxy. ii. Placentation types. iii. Variation in calyx and corolla and their significances. iv. Variation in androecium and gynoecium and their significances. v. Seed dispersal methods.

B.Sc. III Semester, Practical Examination

ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY

Question paper

Time: 3 hr	. Batch	Date	Marks: 40
 Estima Write t 	e the percentage of pollen viabilities the procedure. Leave the preparat	ity in the given material A b ion for inspection.	by hanging drop method. 07
2. Dissect Identify	and mount the embryo from the by giving reasons.	given material B and draw	a labelled sketch. 04
3. Identify t modific	he specimens C and D, draw a la ation	belled diagram and commen	nt on the morphology/ 08
4. Identify t	he slides E and F with labelled d	iagram and reasons.	08
5. Identify t	he structure in the given photogr	aph/slide G with reasons and	d labelled sketch. 03
6. Practical	Record and project report		10

B.Sc. III Semester, Practical Examination

ANGIOSPERM MORPHOLOGY AND REPRODUCTIVE BOTANY

Scheme of evaluation

1	Α		Slide preparation	03	Reg. No. of Candidates
			Procedure	02	Assigned:
			Tabulation, Calcul	ation &	
			result	02	
	_				
2	В		Mounting	01	
			Identification	01	
			Labelled sketch	01	
			Reasons	01	
					Reg. No. of absentees:
3	С		Identification	01	-
			Labelled sketch	01	
			Reasons	02	
	D			4x2=08	
4	E		Identification	01	Total Examined:
			Labelled sketch	01	
			Reasons	02	
	F		4x2=08		Examiners:
					1. External
5	G		Identification	01	
			Labelled sketch	01	
			Reasons	01	
					2. Internal
6	1	Practical Record & Project Report		7+3=10	

Note to the Examiners:

- A Vinca/Impatiens/any suitable flower.
- B Sweet corn (tender seed)/Crotalaria/ Mustard (tender/ green) seeds
- C Root/Stem modification; & D Inflorescence/Fruit type/Aril/Caruncle
- E & F Anther, ovule type/Placentation type
- G Electron micrograph of Ultrastructure of mature egg apparatus/ embryo suspensor/photograph of acetolyzed pollen grain showing ornamentation and aperture.

Open Elective Course: Semester - III

Medicinal Botany

Course outcome: After the successful completion of the course, the student will be able to:

- Understand the medicinal properties of plants and different systems of medicines
- Understand the adulterations in herbal drugs and evaluation of an herbal drug
- Develop interest in the cultivation and conservation of medicinal plants.

Unit	Tonics	Teaching
Umt	Topics	Hours
Ι	Introduction to medicinal Botany, Role of plants in traditional medical systems -	12
	Ayurveda, sidda, unani and folk medicine. Contribution of medicinal plants to modern	
	medicine - Important plant derived modern medicines and their uses. Diversity of	
	medicinal plants of India.	
	Medicinal plant trade – global and national scenario. Herbal medicinal industries.	
	A medicinally useful plant part with examples – root, stem, leaf, and fruits/seeds.	
	Chemical constituents of herbal drugs with examples- carbohydrates, alkaloids,	
	glycosides, oils, resins, lipids and fibres.	
	Study of morphology, taxonomy, medicinal uses and commercial products of important	
	Indian traditional medicinal plants (List to be given)	
II	Adulteration of herbal drugs. Methods of evaluation of herbal drugs - organoleptic,	12
	microscopical, chemical, physical, and biological.	
	Concept of herbal neutraceuticals and cosmeceuticals	
	Collection and processing of herbal drugs – harvesting drying garbling packing storage	
	quality management and documentation	
	quanty management and documentation.	
	Importance of cultivation and conservation of medicinal plants.	
	Medical ethnobotany – definition, History, and scope. Methods of medical ethnobotany	
	and its contributions.	
Total		24 Hours

SUGGESTED REFERENCE BOOKS:

- 1. S. K. Jain1995. Manual of Ethnobotany. Scientific publishers.
- 2. Ashwin Dutt, 2009. An Introduction to Medicinal Plants, Adhyayan Publishers and distributers
- 3. Atal and Kapoor, 1982. Cultivation and Utilization of Medicinal Plants, RRL Jammu Tavi.
- 4. Biren Shah and A K Seth, 2014. Text Book of Pharmacognosy and Phytochemistry. Elsevier Publishers.
- 5. Trivedi PC, 2009. Medicinal plants Utilization and Conservation. Avishkar publishers, Jaipur,India.
- 6. Akerele O, Heywood V and Singe H, 1991. The Conservation of Medicinal Plants. Cambridge University Press, Cambridge.
- 7. Chaudhary AB, 2007. Endangered medicinal plants. Daya Publishing House, Del

SEMESTER – IV Taxonomy and Economic Botany – Theory

Course objectives:

- > To study the methods of identification, classification, and nomenclature of angiosperms
- > To know economically important plants and their uses

Course outcome:

After the successful completion of the course, the student will be able to:

- > Understand the different systems of plant classification
- Identify, classify, and describe a plant in scientific terms, thereby, identification of plants using dichotomous keys, skill development in identification and classification of flowering plants.
- > Interpret the rules of ICN in botanical nomenclature
- > Recognize the importance of herbarium and digital herbarium,
- > Recognize locally available angiosperm families and plants of economic importance.

Unit	Topics	Teaching
om	Topics	Hours
Ι	Introduction to Taxonomy : History, objectives, scope and relevance of Taxonomy Systems of classification : Artificial - Carlous Linnaeus's, Natural- Bentham and	12
	A brief study of APG system of plant classification with focus to latest APG IV system and its significance	
	Plant identification : Taxonomic dichotomous keys; brief account of intended (yoked) and bracketed keys.	
	Botanical nomenclature : Binomial nomenclature, a brief introduction to ICBN- principles and rules, ranks of taxa and taxonomic types.	
	Brief introduction to cyto-taxonomy, chemo-taxonomy, numerical taxonomy and molecular taxonomy, DNA barcoding of plants.	
П	 Herbaria and herbarium techniques, digital herbaria. Botanical Survey of India, Botanical gardens, and their functions. Distinguishing features with economic importance of the local examples (any five) of the following families of angiosperms, according to Bentham and Hooker system: Polypetalae- Annonaceae, Malvaceae, Fabaceae and its sub-families, Rutaceae, Anacardeaceae, Myrtaceae, Cucurbitaceae and Apiaceae. 	12
III	Distinguishing features with economic importance of the local examples (any five) of the following families of angiosperms according to Bentham and Hooker system: Gamopetalae- Rubiaceae, Asteraceae, Apocynaceae, Solanaceae and Lamiaceae. Monochlamydeae–Amaranthaceae, Euphorbiaceae and Moraceae Monocotyledonae- Orchidaceae, Arecaceae and Poaceae.	12

IV	Economic Botany:	12
	Introduction to economic botany: Definition and significance	
	Cereals: Botany*, products and uses of Rice and Wheat. Brief account of millets.	
	Pulses/ Legumes: Botany and uses of Mung bean and Pigeon pea	
	Brief account of fodder legumes.	
	Spices and condiments: Definition. Botany and uses of Cinnamon, Clove, Black pepper,	
	Cardamom, Ginger, and Coriander.	
	Beverages: Definition. Botany, processing and uses of Tea, Coffee, and Cocoa.	
	Oil yielding plants: Types of plant oils with examples -fatty oils and essential oils.	
	Botany, extraction/processing and uses of Coconut, Groundnut, Eucalyptus and	
	Sandalwood oils.	
	Fiber yielding plants: Classification based on origin of fibers. Morphology, extraction and	
	uses of Cotton, Coir and Jute fibers.	
	Timber yielding plants: Important timber yielding plants of India (any five) and their uses.	
	Rubber yielding plants: Botanical source, extraction/processing, and uses of Hevea rubber	
	Sugar yielding plants: Morphology and processing of sugarcane, products, and by-	
	products of sugarcane industry.	
	Medicinal plants: Botany and uses of Rauwolfia serpentina, Centella asiatica, Tinospora	
	cordifolia and Aloe vera	
	A general account of outdoor and indoor ornamental plants.	
	A general account of ethnobotany: definition, branches and significance.	
	Note: *Botany includes botanical name, family, place of origin and parts used	
	Total	48 hrs

Reference Books:

- 1. S. K. Jain1995. Manual of Ethnobotany. Scientific publishers.
- 2. Dutta, S.C 1988. Systemic Botany, Wiley Eastern, New Delhi.
- 3. Sing. G 1999. Plant Systematics; Theory and Practical. Oxford and IBH, New Delhi
- 4. S. Sundar Rajan 2007. College Botany Vol-V, Part 1: Taxonomy and Economic Botany Himalaya Publishing House.
- 5. Susil Kumar Mukharjee 2004. College Botany Vol-III. New Central Book agency, London
- 6. A.V.S.S Sambamurthy 2009. Taxonomy of Angiosperm. I.K International Pvt. Ltd. New Delhi
- 7. B.K. Verma 2011. Taxonomy of Angiosperms. PHI Learning Pvt.Ltd. New Delhi.
- 8. Saxena and Saxena -2014. Plant Taxonomy, Pragati Prakashan Meerut.
- 9. B P Pandey 2014. Modern Practical Botany Vol II. S. Chand Publication
- 10. P. Vasanth Kumar 2014. Economic Botany. Sonali Publications New Delhi.
- 11. A.K Sharma 2015. Taxonomy of Angiosperms and Utilization of Plants. Pragati Prakashan
- 12. O.P Sharma 2016. Plant Taxonomy. Mc.Graw Hill Education. Pvt. Ltd. New Delhi.
- 13. K. Gopalakrishna Bhat 2014. Flora of South Kanara, Published by theauthor.
- 14. K. Gopalakrishna Bhat 2003. Flora of Udupi, Published by theauthor.
- 15. Bendre Kumar 2000: Economic Botany Rastogi Publications, Shivaji Road, Meerut
- 16. Singh V. and Jain D. K. 2016. Taxonomy of Angiosperms. RastogiPublications.
- 17. Kochhar, S.L. 2011. Economic Botany in the Tropics, MacMillan Publishers, India Ltd., New Delhi. 4th Edition.

$\mathbf{SEMESTER} - \mathbf{IV}$
Taxonomy and Economic Botany-Practical

Practical No.	Experiments	
1	Study of families Annonaceae and Malyaceae	
1		
2	Study of Fabaceae sub- families	
3	Study of families Myrtaceae and Apiaceae	
4	Study of families Rubiaceae and Asteraceae	
5	Study of families Apocynaceae and Lamiaceae	
6	Study of families Amaranthaceae and Euphorbiaceae	
7	Study of families Arecaceae and Poaceae	
8 & 9 Botany and uses of economically important plants with observation of plants/plant p		
	Rice, wheat flour, Bengal gram Cinnamon, Clove, Black pepper, Cardamom, Ginger and	
	Coriander, Tea powder, Coffee powder, Cocoa fruit, Cotton, Coir and Jute fibers, Rubber, Jag <i>Centella asiatica</i> and <i>Aloe vera</i> .	
10	Study of outdoor and indoor ornamental plants (two each) with photographs.	
11 &12	Mini project report in groups of 2-3 students, from any one of the following lists to be recorded in	
	the practical record.	
	a) Study of the members of the family Cucurbitaceae (any 5)	
	b) Study of the members of the family Anacardiaceae (any 5)	
	d) Dreparation of digital harbarium for plant apagimana (apy 2)	
	a) Chart propagation on processing/astraction of any one assential ail	
	c) Chart preparation on processing/extraction of any one essential on	

Activities:

Field visits to study the botanical name, family, common names and economic/ethno botanical importance of local angiosperms found in flowering. A brief report of such field visits with the list of plants observed and field photographs/diagrams should be included in the practical record.

Mangalore University

B.Sc. IV Semester- Practical Examination TAXONOMY and ECONOMIC BOTANY Question Paper and Scheme of evaluation

_	Tim	e: 3hrs. Batch	. Date	Time am/pm	Max. Marks: 40
1. 2. 3. 4. 5.	Derive Explai Write Write Practic	e and describe the speci n the specimen D using te the floral diagram and flor botanical name, common cal Record with field visit	ically nily name pecimen E ed of F, G, H & I	12 05 05 08 10	
1	A B C		Derivation Family name Description	01 01 02 04each	Reg. No. of Candidates Assigned
2	D		Family name technical description	01 04 05	Reg. No. of absentees:
3	E		Fl.formula Fl.diagram	$\begin{array}{r} 02\\ \underline{}\\ \underline{03}\\ 05 \end{array}$	
4	F G H I		Botanical name Common name Family name Part used	1/2 1/2 1/2 1/2 02 each	1.External
5		Practical Record with field visit &Project report		10	2.Internal

A B & C Each from Polypetalae, Gamopetalae and Monochlamydeae

D Plant specimen with inflorescence from any of the family studied.

E Plant Specimen from any of the family studied.

F, G, H & I Plant/plant product from any of the specimen mentioned in the practical syllabus.

Open Elective Course: Semester - IV

Gardening and Nursery Management

Course outcome: After the successful completion of the course, the student will be able to:

Understand the nursery techniques and management

Develop the knowledge of different types of gardens and garden plants and their management.

Unit	Content of Theory Elective Course	Teaching Hours
I	Nursery: Definition, objectives and scope and general practices and building up of infrastructure for nursery, planning and Seasonal activities. Planting-direct seeding and transplants, Soil free/ soilless/synthetic growth mediums for pot sand nursery. Hardening of plants. Green house, mist chamber, shed root, shade house and glass house. Bonsai technique. Culture of bonsai, art of making bonsai. Land scape designs, Urban land scaping, Land scaping for specific situations - institutions, industries, residents, hospitals, road sides, establishment and maintenance	12hrs
II	Gardening: Definition, objectives, and scope. Principles of gardening, garden components, adornments, lawn making, methods of designing rockery, water garden. Different types of gardening-vertical gardens, roof gardens, parks and public gardens, indoor gardening, therapeutic gardening. Special types of gardens, parks and its components. Plant materials and design. Walkpaths, bridges, constructed features; their design, values in land scaping. Planting trees, shrubs and herbaceous perennials. Climbers and creepers, palms, ferns, grasses and succulents. Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting. Transplanting of seedlings - Study of cultivation of different vegetables and flowering plants, Developing and maintence of different types of lawns.	12hrs
	Total	24 Hours

Text Books and References

- 1. Agrawal, P.K. (1993). Hand Book of Seed Technology. New Delhi, Delhi: Dept. of Agriculture and Cooperation, National Seed Corporation Ltd.
- 2. Bose T.K., Mukherjee, D. (1972). Gardening in India. New Delhi, Delhi: Oxford & IBH Publishing.
- 3. Jules, J. (1979). Horticultural Science, 3rd Edition. San Francisco, California: W.H. Freeman and Co.
- 4. Kumar, N. (1997). Introduction to Horticulture. Nagercoil, Tamil Nadu: Rajalakshmi Publications.
- 5. Musser E. Andres. (2005). Fundamentals of Horticulture. New Delhi, Delhi: Mc Graw Hill Book Co.

B.Sc. BOTANY – IV Semester Skill Paper 1 Floriculture

Objectives:

- To have a basic idea about floriculture.
- To learn the commercial aspects of floriculture.
- To learn certain arts related to floriculture.
- To learn methods involved in the cultivation of commercially important plants for cut flowers.

Learning outcome:

After completing this course, the learner will be able to;

- Distinguish among the various Ornamental and indoor plants.
- Understand various commercial aspects of floriculture.
- Diagnose the various diseases and pests of ornamental plants.

Unit I

12 Hrs

Introduction: Importance and scope of floriculture.

Ornamental Plants: Flowering annuals; perennials; Divine vines; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and fern allies; Cultivation of plants in pots; Indoor gardening.

Floriculture and greenhouse technology. Commercial aspects and exporting of flowers and ornamental plants. Quarantine and testing requirements.

Unit II

Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Flower arrangements, Ikebana in brie. Methods to prolong vase life.

Cultivation of Important cut flowers (Carnation, Jasmine, Anthurium, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolus, Marigold, Rose, Lilium, Orchids). Diseases and Pests of Ornamental Plants.

Referencce

- 1. Randhawa, G.S. and Mukhopadhyay, A. (1986). Floriculture in India. Allied Publishers.
- 2. Adams, C., M. Early and J. Brrok (2011). Principles of Horticulture. Routledge, U.K

12 Hrs

SEMESTER –V; Paper-V

Ecology and Conservation Biology – Theory

Course objectives:

- > To make the students understand the interactions between environment and organisms
- > To increase the awareness among students about global environmental concerns.
- > To make the students appreciate the concepts of ecological issues and conservation methods.

Course outcome:

After the successful completion of the course, the student will be able to:

- Understand the role of various factors in developing the ecology of an area.
- Understand the stability of an ecosystem.
- Learn the conservation measures

Unit	Topics	Teaching Hours
		(36)
Ι	Introduction to Ecology and Ecosystem Ecology	12
	Definitions, Principles and scope of Ecology.	
	Ecological factors: Climatic factors: light, temperature, precipitation and	
	humidity.	
	Edaphic factors: Soil and its types, soil texture, soil profile, physico-chemical	
	properties of soil-mineral particle, soil pH, soil aeration, organic matter, soil	
	humus and soil microorganisms.	
	Ecological groups of plants and their adaptations: Morphological and	
	anatomical adaptations of hydrophytes, xerophytes, epiphytes and halophytes.	
	Ecosystem Ecology: Types of ecosystems with examples – terrestrial and aquatic	
	Ecosystem functions and processes.	
	Ecological succession: Definition, types - primary and secondary. General stages	
	of succession.	
	Community Ecology: Community and its characteristics, Concept of Ecotone	
	and Ecotypes.	
II	Unit-II: PhytogeographyandEnvironmentalissues	12
	Phyto geographical regions - concept, phyto geographical regions of India.	
	Vegetation types of Karnataka – Composition and distribution of evergreen,	
	semi-evergreen, deciduous, scrub, mangroves, shoal forests.	
	Ecological methods and techniques: Methods of sampling plant communities	
	-transects and quadrates. Remote sensing as a tool for vegetation analysis, land	
	use land cover mapping.	
	Water pollution: Causes, effects and control of water pollution.	
	Air pollution: Causes, effects and control measures.	
	Soil pollution: Causes, effects and control measures.	

III	Unit-III: Biodiversity and Conservation	12
	Biodiversity: Definition, types of biodiversity - habitat diversity, species	
	diversity and genetic diversity, Global and Indian species diversity in brief.	
	NTFP, Values of Biodiversity, Threats to biodiversity.	
	Concept of Biodiversity Hotspots, Biodiversity hotspots of India. Concept of	
	endemism and endemic species. ICUN plant categories with special reference to	
	Karnataka/Western Ghats. Biodiversity Conservation-Indian Forest	
	conservation act, Biodiversity bill (2002). Conservation methods. In-situ and ex-	
	situ methods. In-situ methods – Biosphere reserves, National parks, Sanctuaries,	
	Sacred grooves. Ex-situ methods-Botanical gardens, Seed bank, Gene banks,	
	Pollen banks, Culture collections, Cryopreservation.	
	Soil and Water conservation practices: Soil management, Rain water	
	harvesting and watershed management.	
	Total	36 hrs

REFERENCES:

- Bendre A. M. & Pande P. C. 2006. Introductory Botany, Rastogi Publications.
- Chapman, J.L&M.J. Reiss 1992. Ecology (Principles & Applications). Cambridge University Press, U.K.
- Kaushik A. & Kaushik C.P. 1990. Perspectives in Environmental Studies. New Age International Publishers
- Kochhar, P.L. 1975. Plant Ecology. (9th Edn.,) New Delhi, Bombay.
- Kumar, H.D. 1992. Modern Concepts of Ecology (7th Edn.) Vikas Publishing Co., New Delhi.
- Mohan P. Arora. 2002. Ecology, Himalaya Publishing House.
- Odum E.P. 1975. Ecology by Holt, Rinert & Winston.
- Sharma, P.D. 2018. Fundamentals of Ecology. Rastogi Publications, New Delhi.
- Shukla, R.S. and Chandel, P.S. 2005. A Textbook of Plant Ecology: Ethnobotany and Soil Science. 10th edition. S Chand publication, New Delhi.
- Verma P.S. & Agarwal V.K. 2010. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Company Pvt. Ltd.
- Weaver J. E. & Clements F. E.: Plant Ecology, Tata McGraw-Hill Publishing Company Ltd. New Delhi.

SEMESTER –V; Paper-VI

Genetics, Cell and Molecular Biology - Theory

Course objectives:

- > To study the structure and functions of a cell and its organelles.
- > To understand cell division and plant growth
- > To know the inheritance in plants
- \succ To study the plant at its molecular level

Course outcome:

After the successful completion of the course, the student will be able to:

- Understand the significance of a cell and its organelles
- Distinguish the two types of cell division and its role in plants growth and development.
- Understand the plants at molecular level

Topics	Teaching Hrs (36)
Cytology:	113. (30)
Structure of plant cell, Ultra-structure and functions of cell wall, plasma membrane- fluid-mosaic model, endoplasmic reticulum, chloroplast, ribosomes, golgi complex, mitochondria, peroxisome, plastids and vacuole. Ultra structure of nucleus - nuclear membrane, nuclear pore complex and	
nucleolus. Ergastic substances in plant cells.	
Cell Division and Chromosomes:	
Types of chromosomes based on centromere position, Autosomes and Allosomes, structure of metaphase chromosome, Ultra structure of Chromosomes- Nucleosome model. Cell cycle, Mitosis in plant cells– karyokinesis and cytokinesis, Meiosis in plant	
cells, significance of mitosis and meiosis.	
Structure, Chemistry and Expression of Gene:	12
 Experiments to prove DNA as genetic material – Griffith experiment, Avery. McCarty and MacLeod experiments, Hershey - Chase experiment. DNA: Chemical composition, types -A, B and Z-DNA, structure-Watson & Crick model, Semiconservative replication of DNA. RNA: Structure and functions of m RNA, t RNA and r RNA. Structure of Gene: Cistron, recon and muton concept. Prokaryotic and eukaryotic genes. Genetic code and its properties. Regulation of gene expression in prokaryotes- Lac operon model. Gene regulation in eukaryotes- Transcription and Translation, process of Gene splicing, post transcriptional changes. 	
	TopicsCytology:Structure of plant cell, Ultra-structure and functions of cell wall, plasma membrane- fluid-mosaic model, endoplasmic reticulum, chloroplast, ribosomes, golgi complex, mitochondria, peroxisome, plastids and vacuole. Ultra structure of nucleus - nuclear membrane, nuclear pore complex and nucleolus. Ergastic substances in plant cells.Cell Division and Chromosomes:Types of chromosomes based on centromere position, Autosomes and Allosomes, structure of metaphase chromosome, Ultra structure of Chromosomes. Nucleosome model.Cell cycle, Mitosis in plant cells- karyokinesis and cytokinesis, Meiosis in plant cells, significance of mitosis and meiosis.Structure, Chemistry and Expression of Gene:Experiments to prove DNA as genetic material – Griffith experiment, Avery. McCarty and MacLeod experiments, Hershey - Chase experiment.DNA: Chemical composition, types -A, B and Z-DNA, structure-Watson & Crick model, Semiconservative replication of DNA.RNA: Structure and functions of m RNA, t RNA and r RNA.Structure of Gene: Cistron, recon and muton concept. Prokaryotic and eukaryotic genes. Genetic code and its properties.Regulation of gene expression in prokaryotes- Lac operon model.Gene regulation in eukaryotes- Transcription and Translation, process of Gene splicing, post transcriptional changes.

rs
rs

REFERENCE BOOKS:

- 1. S Sundara Rajan, 2004, Genetics, Anmol Publications Ltd.
- 2. Gupta P.K 1999. A text book of Cell and Molecular Biology. Rastogi Publication Meerut
- Cooper, G.M. and Hausman, R.E. 2009. The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 4. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular Biology. 8thedition. Lippincott Williams and Wilkins, Philadelphia.
- 5. Gardner, E.J., Simmons, M.J., Snustad, D.P. 2008. Principles of Genetics.8th Edition Wiley India.
- 6. Griffiths, AJF. Wessler, SR., Lewontin, RC. and Carroll, SB. 2012. Introduction to Genetic Analysis. IX Edition W.H. Freeman and Co.
- 7. Burns G.W. 1983. The Science of Genetics An Introduction to Heredity. 5th edition Mac Mill. Publ.
- 8. David Freifilder 1996. Essentials of Molecular biology Panima Publishing company New Delhi.
- 9. Gardner E.J., M.J. Simmons & D.P. Snustad. 1991. Principles to Genetics 8th edition. John Wiley
- 10. Gupta P.K. 2000 Genetics and Cytogenetics. Rastogi Publishers.
- 11. lug W.S. & M.R. Gummings. 2003. Concepts of Genetics 7th Edition. Pearson Edition
- 12. Kumar H.D. 2000. Molecular Biology. Vikas Publishers.
- Malacinski G.M. & D. Freifelder. 1998. Essentials of Molecular Biology. Jones & Bartlatt Publishing Boston. 3rd Edition.
- 14. Powar C.B. 2005, Cell Biology 3 edition Himalaya Publishing New Delhi.
- 15. Sambamurty A.V.S.S. 1999. Genetics, Narosa Publishing House.

SEMESTER -V

Ecology, Genetics, Cell and Molecular Biology–Practical

Practical	Experiments
No.	
1	Hydrophytes: Morphological adaptations in Pistia, Eichhornia, Hydrilla, Nymphaea and
	Anatomical adaptations of Hydrophytes -Hydrilla and Nymphaea.
2	Xerophytes: Morphological adaptations in Asparagus, Casuarina, Acacia, Aloe vera,
	Euphorbia tirucalli and Anatomical adaptations of Casuarina phylloclade/Acacia
	phylloclade.
3	Epiphytes: Morphological adaptations in Acampe, Bulbophyllum, Drynaria and
	Anatomical adaptations of epiphytic root of Acampe/ Vanda.
	Halophytes: Vivipary and Pneumatophores
4	Demonstration of different types of vegetation sampling methods – transects and quadrats.
	Field visits to study different types of local vegetations/ecosystems and the report to be
	written in practical record book
5	Project work Ecology
6	Project work
7	Study of ergastic substances - starch (potato), aleurone (wheat grain), calcium oxalate
	(Pistia), calcium carbonate (Ficus leaf), oil globules (castor seed) and Raphides (Colocasia
	petiole).
	Observation of permanent slides of mitosis and meiosis
8	Study of different stages of mitosis by squash technique using Onion root tip
9	Study of different stages of meiosis using permanent slides.
10	Measurement of length and breadth of cells by micrometry technique (Using Onion or
	Rhoeo leaf cells)
11	Genetic problems related to Mendel's law and incomplete dominance (any Four)
12	Genetic problems related to interaction of genes (any Four)

Mangalore University III B. Sc. Semester - V, Practical Examination Ecology, Genetics, Cell and Molecular Biology Question paper and Scheme of evaluation

Time: 3 hrs.	Batch	Date	Timeam/pm	Max. Ma	arks: 40
1. Prepare a st	tained temporary	mount of the T.S. of	of material A. Draw a neat	labeled di	agram.
Leave the s	lide for inspectio	n.			05
2. Prepare a se	puash of \mathbf{B} for the	study of mitosis. L	eave the slide for inspection	on.	06
3. Identify the	ecological group	of C and D. Comm	nent on their ecological ad	aptation.	04
4. Identify the	slides E & F and	Comment on it.			06
5. Solve the ge	enetic problem G				04
6. Practical Re	cord with field vi	isit report			10
7. Project wor	k report				05

1	A		Prep. Sk Features	$ \begin{array}{r} 02\\ 01\\ \underline{02}\\ 05 \end{array} $	Reg. No. of Candidates Assigned:
2	в		Prep. & Stage Sk Comments	$\begin{array}{r} 03\\01\\02\\06\end{array}$	Reg No of
3	С		Ecol.Group Ecol.Features	01 01	absentees:
	D			02 each	T (1) 1
4	E		Identification Sk	01 01	<u>1 otal examined:</u> Examiners:
	F		Comment	01 03 each	1.External
5	G		Problem solv Conclusion	re 03 01	
6		Practical Record with field visit report		10	2.Internal
7		Project report		05	

Instruction to Examiners:

A from Hydrophyte/Xerophyte/ Epiphyte

B Mitosis squash

- C and D Specimen from Hydrophyte/Xerophyte/ Epiphyte/Halophyte
- E- Stages of Meiosis and F-Ergastic substance
- G -Any one genetic problem mentioned in the practical syllabus

B.Sc. BOTANY – V Semester SKILL PAPER -II Mushroom Cultivation Technology

Learning outcomes:

After completion of the course, the students will be able to;

- Understand the various aspects of mushroom cultivation the diversity of microbes in nature.
- Understand the storage of methods of cultivated mushrooms
- Know the nutritional benefits of edible mushrooms

Unit	Topics	Teaching Hours
I	Introduction – Edible and non-edible mushrooms. Edible mushrooms commercially cultivated in India – Volvariella volvacea, Pleurotus citrinopileatus and Agaricus bisporus. Cultivation Technology: History. Infrastructure- substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, stove, sieves, culture rack, mushroom unit (Thatched house), water sprayer, tray. Pure culture: Medium, sterilization, preparation of spawn, multiplication. Mushroom bed preparation - paddy straw, sugarcane trash, banana leaves, areca sheath and coconut leaves. Composting technology in mushroom production.	12
Π	 Storage and nutrition: Short-term storage (Refrigeration – up to 24 hours) Long term Storage (canning, pickels, papads), drying, storage in salt solutions. Chemical composition and their nutritional values: Proteins - amino acids, minerals, carbohydrates, vitamins and crude fiber. Food Preparation: Types of foods prepared from mushrooms. Research Centers - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value. 	12
	Total	24 hrs

References:

- Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R (1991) Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- Swaminathan, M. (1990) Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore -560018.
- 3. Tewari, Pankaj Kapoor, S.C., (1988). Mushroom cultivation, Mittal Publications, Delhi.
- 4. Nita Bahl (1984-1988) Hand book of Mushrooms, II Edition, Vol. I & Vol.II.

SEMESTER – VI; Paper-VII PLANT PHYSIOLOGY – Theory

Course objectives: To understand the various physiological life processes in plants

To study the importance of the physiological processes and their mechanism To study the role of various metabolites and their importance

Course outcome: After the successful completion of the course, the student will be able to:

- Compare the various metabolic activities taking place in plants.
- Evaluate the various factors affecting the plant activities.

Unit	Topics	Teaching Hrs (36)
Ι	 Plant water relations: Mechanism of water absorption, Factors affecting water absorption. Mechanism of ascent of sap: Vital and physical force theories. Transpiration. Types and process. Mechanism of guard cell movement. K⁺ ion exchange mechanism. Antitranspirants. Guttation. Translocation of organic solutes: Transport of organic solutes. path of transport, vein loading and unloading. Transcellular hypothesis, mass flow hypothesis. Mineral nutrition: Essential elements: Classification - Macro and Micronutrients. Functions and deficiency symptoms of macro elements- N, P, K and Mg. Functions and deficiency symptoms of Micronutrients-Zn, Mn and B. Hydroponics and its applications. Mechanism of mineral salt absorption: Passive absorption – diffusion, ion exchange. Active absorption- Cytochrome pump theory, Protein Lecithin theory. Enzymes - classification, kinetics and mechanism of action. Bioenergetics: Definition, examples for major bioenergetic processes. 	12
II	 Photosynthesis: Photosynthetic Pigments (Chl a, b, xanthophylls, carotene); Photosystem I and II, reaction center, antenna molecules; Electron transport and mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation; Photorespiration (C2 pathway). Respiration: Glycolysis, TCA cycle; Oxidative phosphorylation, Glyoxylate cycle, Oxidative Pentose Phosphate Pathway. Anaerobic respiration – alcoholic and lactic acid fermentation. ATP yield during aerobic and anaerobic respirations. Respiratory quotient. 	12

III	Carbohydrate metabolism-General account of carbohydrates. Metabolism of sucrose	12
	and starch.	
	Nitrogen metabolism - physical and biological nitrogen fixation and mechanism of	
	biological nitrogen fixation- asymboitic and symbiotic, Nitrate reduction and amino	
	acid synthesis.	
	Fat metabolism - General account of fats, synthesis of glycerol, synthesis of fatty	
	acids, and condensation of fatty acid and glycerol, fat degradation, β (Beta) -	
	oxidation, glyoxylate cycle and its significance, plant waxes.	
	Plant growth regulators: Definition and classification, Role of Auxins, Gibberlins,	
	cytokinins, ABA and ethylene on plant growth and development. Practical utility in	
	agriculture and horticulture, Synthetic growth regulators.	
	Plant movements: Nastic movements - nyctinasty, chemo nasty and seismonasty.	
	Tropic movementsphototropic, hydrotropic, geotropic and thigmotropic.	
	Brief account of seed dormancy: Causes and breaking of seed dormancy	
	Total	36 Hours

References:

- 1. Wilson, K. and Walker, J. 1994. Fundamentals of Biochemistry 2nd Ed, John Wiley and Sons Inc.
- 2. JainV K, 2008. Fundamentals of Plant Physiology. S Chand and Co.
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi.
- 4. Kumar and Purohit. Plant Physiology: Fundementals and Applications. Agrobotanical Publishers.
- 5. Malik CP, 2002. Plant Physiology. Kalyani publishers.
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology. New Central Book Agency, Calcutta.
- 7. Noggle GR, Fritz GJ, Introductory Plant Physiology. Prentice Hall of India.
- 8. Pandey SN, Sinha BK, 2006. Plant Physiology. Vikas Publishing House, New Delhi.
- 9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS publishers and Distributers, New Delhi.
- 10. Verma V, 2007. Text book of plant physiology, Ane books India.

SEMESTER – VI; Paper-VIII

Plant Breeding and Biotechnology

Course outcome: After the successful completion of the course, the student will be able to:

Understand the plant breeding methods and importance

Understand the methods of plant tissue culture and plant biotechnology

Unit	Topics	Teaching Hrs. (36)
	•	~ /
Ι	Plant Breeding:	12
	History of plant breeding, Objectives, and major contributions of plant breeding. Centres	
	of origin and evolution of crop plants. Genetic basis of breeding self- and cross-pollinated	
	crops. Role of plant genetic resources in plant breeding.	
	Methods of Plant breeding: Introduction, Selection- Pure line, Clonal and Mass line.	
	Polyploidy breeding, Mutation Breeding, Hybrid breeding - concept of heterosis and	
	inbreeding, types andtechniques of hybridisation.	
	Self-incompatibility and Male sterility in crop plants -types, production, and significance	
	in plant breeding.	
	Cultivar development, Plant Breeders rights and Farmers rights	
II	Plant Tissue Culture:	12
	History and Scope, concept of cellular	
	totipotency. Tissue culture laboratory and	
	Equipments	
	Basic aspects of plant tissue culture- Sterilization, Culture media and its preparation. Role	
	ofgrowth hormones in plant tissue culture.	
	Types of cultures-Callus culture and Organogenesis. Pollen culture and haploid plant	
	production. Embryo culture. Somatic embryogenesis and synthetic seeds. Protoplast culture	
	and somatic hybridization techniques.	
	Application of plant tissue culture in Agriculture, Forestry, Industries and plant	
	conservation.	
III	Plant Biotechnology:	12
	Introduction to Plant Genetic Engineering.	
	Tools used in genetic engineering: Enzymes- Restriction endonucleases, DNA ligase,	
	Vectors -pBR 322, Ti and Ri plasmid vectors, artificial chromosomes, difference between	
	cloning and expression vectors.	
	General steps of recombinant DNA technology using plasmid vectors and bacterial host	
	cell. Gene transfer methods to plant cells: Agrobacterium based gene transfer technique,	
	Direct genetransfer – microinjection, electroporation, microprojectile techniques. Plant	
	regeneration fromtransformed cells.	
	Transgenic plants: Definition and examples, Steps involved in the production of golden rice and	
	Bt cotton. Applications and threats from transgenic plants.	
	Total	36 hrs

SUGGESTED REFERENCE BOOKS:

- 1. Allard R.W (1999): The Principles of Plant Breeding, John & Wiley and Sons.
- 2. Poelman J.M: Breeding Field Crops, Springer.
- 3. George Acquaah (2012): Principles of Plant Genetics & Breeding: Wiley-Blackwell.
- 4. Bose T.K. & Mukherjee, D., 1972, Gardening in India, Oxford & IBH Publishing Co., New Delhi.
- 5. Sandhu, M.K., 1989, Plant Propagation, Wile Eastern Ltd., Bangalore, Madras.
- 6. Kumar, N., 1997, Introduction to Horticulture, Rajalakshmi Publications, Nagercoil. institution)
- 7. Pullaiah. T. and M.V. Subba Rao. 2009. Plant Tissue culture. Scientific Publishers, New Delhi.
- 8. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 9. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 10. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 11. Gupta P.K. (2010), Plant Biotechnology, Rastogi Publications, Meerut.
- 12. Monica Jain (2014), Environmental Biotechnology, Narosa Publishing House, New Delhi.
- 13. Mohapatra, P. K. (2007), Textbook of Environmental Biotechnology, IK International, New Delhi.

SEMESTER -VI

Plant Physiology and Plant Breeding & Biotechnology

Practical No	Experiments
	Major experiments
1	Experiment to measure the solute potential of a cell sap by plasmolytic method.
2	Demonstration of transpiration pull/Suction force due to transpiration.
3	Separation of plant pigments by paper chromatography method.
4	Demonstration of CO ₂ liberation during respiration using Ganong's respiroscope
	Minor Experiments
5	Potato osmoscope /Thistle funnel experiment to demonstrate osmosis
	Demonstration of imbibition pressure using germinating seeds
6	Demonstration of O2 liberation during photosynthesis by bubbling method
	Demonstration of fermentation using Kuhne's Fermentation vessel
7	Demonstration of plant movements – Heliotropism, Geotropism, Hydrotropism
	Measurement of growth using arc auxanometer
8	Qualitative test for carbohydrates, Protein, fat, and oil
9	Study of plant propagation methods-Cutting, Layering and Grafting
10	Techniques of emasculation, artificial pollination, and bagging
11(a)	Study of Biotechnology lab equipment's – Autoclave, Laminar air flow cabinet, Hot air
	oven, Incubator, Colony counter, Hemocytometer
11 (b)	Preparation of Synthetic seeds by alginate encapsulation
12	Visits to local nurseries and institutions involved in plant breeding to study the various methods and techniques employed/ Biotechnology Lab or institutions/biofertilizer and biopesticide production sites and submit a report

Mangalore University B. Sc – VI Semester, Botany Practical Examination PLANT PHYSIOLOGY AND BIOTECHNOLOGY

Time: 3 hrs.	Batch	Date	Timeam/pm	Max. Marks: 40
1. C	onduct Major Exper	riment A		12 marks
2. C	08 marks			
3. Pe	erform the Biochem	ical test D		04 marks
4. Id	lentify and comment	t on E and F		06 marks
5. Pi	ractical Record and	Field report		10 marks

Mangalore University B. Sc – VI Semester, Botany Practical Examination PLANT PHYSIOLOGY AND BIOTECHNOLOGY Question paper and Scheme of evaluation

1	A		Requirements - 02 Principle -01	Register No. Assigned:
			Sketch-01	
			Procedure-02	
			Setting-04	
			Results and	
			Inference- $02 = 12$	
2	В		Procedure -02	Absentees:
			Sketch -01	
	С		Results and	
			Inference <u>01</u>	
			04 each	Total Examined:
3	D		Procedure-02	
			Prep -01	Examiners
			Results and	L'Auminors
			Inference-01	
4	E		Identification 01	1.
			Sk 01	
	F		Comment <u>01</u>	
	-		03 each	2.
5		Practical Record with field visit report	7+3=10	

Instruction to Examiners:

A Physiology Major Experiment by picking lots

B and **C** Physiology minor experiments

D-Biochemical test

E-Plant propagation methods/techniques; F -Any one biotechnological instrument

B.Sc. BOTANY – VI Semester SKILL PAPER -III Seed Technology

Course Outcome:

- Understanding the fundamentals of seed germination. viability and vigour
- Learning about seed production, processing, and quality control.
- Exploring the role of seed technology in agricultural productivity.

Unit 1: Introduction to Seed Technology

- Introduction to Seed Technology: Definition, scope, and importance. Historical perspective of seed technology in agriculture.
- Seed Development and Germination: Structure and development of seeds. Factors affecting seed germination and dormancy.
- Seed Viability and Vigor: Concepts of seed viability and vigor. Methods of testing seed viability and vigor.

Unit 2: Seed Production and Processing

- Principles of Seed Production: Genetic and agronomic principles. Seed production techniques for self-pollinated and cross-pollinated crops.
- Seed Certification and Quality Control: Objectives and procedures of seed certification. Seed standards and quality control measures.
- Seed Processing and Storage: Principles and techniques of seed processing. Seed storage and its importance in maintaining seed quality.

Unit 3: Advances in Seed Technology

- Biotechnological Approaches in Seed Technology: Role of biotechnology in seed improvement. Genetic engineering and molecular markers in seed technology.
- Seed Health: Importance of seed health in agriculture. Methods of seed treatment and protection.
- Seed Industry and Trade: Overview of the seed industry in India. National and international seed trade regulations and policies.

Assessment:

- Internal Assessment Test: 10%
- Assignments/Projects: 10%
- End-Semester Examination: 80%

Recommended Readings:

- 1. Agarwal, R.L., Seed Technology, Oxford & IBH Publishing Co. Pvt. Ltd.
- 2. Bewley, J.D., and Black, M., Seeds: Physiology of Development and Germination, Springer.
- 3. McDonald, M.B., and Copeland, L.O., Seed Production: Principles and Practices, Chapman & Hall.
- 4. Basra, A.S., Seed Quality: Basic Mechanisms and Agricultural Implications.