MANGALORE UNIVERSITY

State Education Policy – 2024 ISEP-2024

BLOWN UP SYLLABUS AND PRACTICAL LIST

FOR

I SEMESTER BCA GENERAL

			Semester I					
Sl. No	Course Code	Title of the Course	Category of Courses	Teaching Hours per Week	SE E	IA	Total Mark s	Credits
1	BCA -1.1	Fundamentals of Computers	Core	4	80	20	100	3
2	BCA -1.2	Programming in C	Core	4	80	20	100	3
3	BCA -1.3	Discrete Mathematics for Computer Applications	Core	5	80	20	100	5
4	BCA -1.4	Information Technology Lab	practical	4	40	10	50	2
5	BCA -1.5	C Programming Lab	practical	4	40	10	50	2

Program Name	BCA	Semester	I		
Course Title	Fundamentals of Computers(Theory)				
Course Code:	BCA-1.1	No.of Credits	03		
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours		
Formative	20	Summative	80		
Assessment Marks		Assessment			
Marks		Marks			

Topics	Book	Chapter/Page No./ Section No.
UNIT I		
Computer Basics: Introduction, Characteristics computers, Evolution computers, Generations of computers, Classification of computers, the computer system, Application of computers.	Book1 Chapter1	1.1 to 1.6
Computer Architecture: Introduction, Central processing unit- ALU, Registers, Control unit, system bus, main memory unit, cache memory	Book1 Chapter2	2.1, 2.2
Input devices: Introduction, Types of input devices, Keyboard, Mouse, Track ball, Joystick light pen, Touch screen and track pad. Speech recognition, digital camera, webcam, flatbed scanner	Book1 Chapter4	4.1, 4.2.1, 4.2.2, 4.2.4, 4.2.5, 4.2.6 (Excluding the working of devices)
Output devices: Types of output, Classification of output devices, Printers—Dot matrix, Ink-jet, Laser, Hydra, Plotter, Monitor — CRT, LCD, Differences between LCD and CRT	Book1 Chapter4	4.3, 4.3.1, 4.3.2, 4.3.4, (Excluding the working of devices and Daisy wheel Printer)

UNIT II		
Computer software: Introduction, software definition,	Book1	11.1, 11.2, 11.3
relationship between software and hardware,	Chapter11	
software categories	_	
Computer programming languages:	Book1	10.1, 10.9, 10.10,
Introduction, developing a program, Program	Chapter10	10.11
development cycle, Types of programming		
languages, generation of programming languages,		
Features of a good programming language.		
	D 10	
Problem Solving techniques: Introduction,	Book2	1:1.1,1.2
Problem solving procedure.	Chapter1	
Algorithms Ctons installed in allowide		
Algorithm: Steps involved in algorithm	Book1	10.2
development, Algorithms for simple problems (To find largest of three numbers, factorial of a	Chapter10	
number, check for prime number, check for	Chapterio	
palindrome, Count number of odd, even and zeros		
in a list of integers)		
in a list of integers)		
Flowcharts: Definition, advantages, Symbols		
used in flow charts. Flowcharts for simple	Book1	10.3, 10.5
problems mentioned in algorithms. Psuedocode.	Chapter10	
UNIT III	O. 101 PCO. 20	
Digital Computers and Digital System:	Book 3	1.2, 1.3, 1.4, 1.5
Introduction to Number System, Decimal number,	Chapter 1	
Binary number, Octal and Hexadecimal numbers,		
Number base conversion, Complements, Binary		
codes, Binary arithmetic, Addition, Subtraction in		
the 1's and 2's complements system, Subtraction		
in the 9's and 10's complement system.		
Boolean Algebra: Basic definitions, Axiomatic	Book 3	2.1, 2.2, 2.3
definition of Boolean algebra, Basic theorems and	Chapter 2	
properties of Boolean algebra, Venn diagram.		
UNIT IV	1	
Digital logical gate: Boolean functions,	Book 3	2.4, 2.5, 2.6, 2.7
Canonical and Standard forms, Minterms,	Chapter 2 Chapter 4	(Excluding 2.7.1), 4.7.1
Maxterms, other logic operations, Digital logic	Simple	
gates, Universal gates.		

Simplification of Boolean function: The map	Book 2	
method, Two and three variable maps, Four	Chapter 3	3.1, 3.2, 3.3, 3.5, 3.8
variable maps, Don't care conditions, Product of		
sum simplification.		

Text Books:

- 1. ITL Education Solution Limited, Introduction to Information Technology, Second Edition, Pearson
- 2. How to Solve it by Computer, R G Dromey, Prentice Hall
- 3. M. Morris Mano, Digital Logic and Computer design, PHI, 2015

References Books:

- 1. Pradeep K. Sinha and Priti Sinha, Computer Fundamentals, Sixth Edition, BPB Publication.
- 2. David Riley and Kenny Hunt, Computational thinking for modern solver, Chapman & Hall/CRC.
- 3. J. Glenn Brookshear, Computer Science: An Overview, Twelfth Edition, Addison-Wesley

Program Name	BCA	Semester	I
Course Title	Programming in C (7)	Theory)	
Course Code:	BCA-1.2	No.of Credits	03
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours
Formative Assessment Marks	20	Summative Assessment Marks	80

Topics	Book	Chapter/Page No./ Section No.
UNIT I		
Overview of C: History of C, Importance of C Program, Basic structure of a C-program,		
Execution of C Program.	Book 1	Chapter 1
C Programming Basic Concepts: Character set, C token, Keywords and identifiers, Constants, Variables, data types, Declaration of variables, assigning values to variables, defining symbolic constants.	Book 1	Chapter 2
Input and output with C: Formatted I/O functions - printf and scanf, control stings and escape sequences, output specifications with printf functions; Unformatted I/O functions to read and display single character and a string - getchar, putchar, gets and puts functions.	Book 1	Chapter 4
UNIT II	ı	•

	T
	Chapter 3
	Chapter 5
	Chapter 3
I Doolr 1	Chapter 6
	Chapter 0
•	
Book 1	Chapter 7
DOOK 1	Chapter 8
Book 1	Chapter 9
	Book 1 Book 1 Book 1 Book 1

Book 1	Chapter 10
Book 1	Chapter 11
Dook 1	Chapter 11
Book 1	Chapter 12
Book 1	Chapter 14
	Chapter 17
	Book 1 Book 1

Text Book:

1. E. Balagurusamy, Programming in ANSI C, 7th Edition, Tata McGraw Hill

Reference Books:

- 1. Herbert Schildt, C: The Complete Reference, 4th Edition
- 2. Brain W. Kernighan, C Programming Language, 2nd Edition, Prentice Hall Software
- 3. Kernighan & Ritchie: The C Programming Language, 2nd Edition, PHI
- 4. Kamthane, Programming with ANSI and TURBO C, Pearson Education
- 5. V. Rajaraman, Computer Programming in C, 2nd Edition, PHI
- 6. S. Byron Gottfried, Programming with C, 2nd Edition, TMH
- 7. Yashwant Kanitkar, Let us C, 15th Edition, BPB P.B. Kottur, Computer Concepts and Programming in C, 23rd Edition, Sapna BookHouse

Program Name	BCA	Semester	I		
Course Title	Discrete Mathematics for Computer Applications (Theory)				
Course Code:	BCA-1.3	No.of Credits	05		
Contact hours	5 Hours per week	Duration of SEA/Exam	3 Hours		
Formative Assessment Marks	20	Summative Assessment Marks	80		

Contents	Book	Sections/Sub sections
UNIT I		
Mathematical logic: Introduction, statements, Connectives,	Book -1	1-1,
negation, conjunction, disjunction, statement formulas and		1-2
truth tables, Examples 1,2,3, Exercises 1-2.4(1,2,3,4),		1.2.1 to
Conditional and Biconditional statements [Exclude program		1.2.11
pg no.19], Examples(1,2,3,4,5), Exercises 1-2.6(2,4),		(Exclude 1-
Tautology and contradiction, Exercise 1-2.8-1, equivalence of		2.5, 1-2.7)
formulas, Example 1, duality law, Example 1 [No theorem],		
Tautological Implications [No theorem] ,Exercise 1-		
2.11(1,2,5)		
Exclude all theorems with proofs and algorithms in each	D 1 1	
Subsection]	Book -1	151150
Dradicates and Quantificus (Daga No. 90.95) arguments is int		1-5.1, 1-5.2
Predicates and Quantifiers (Page No. 80-85), arguments, joint Daniel.	Book -1	2-1
Damer.	DOOK -1	2-1.1 to 2-1.9
Sets : Definition, Basic concepts, notation, inclusion and		(Exclude 2-
equality of sets, the power set, Family of sets.		1.6,2-1.7)
Exercise 2-1.3(1,2,4), Page No 104-111, (exclude definition		1.0,2 1.7)
2-1.7)	Book -1	
Operations on sets (All definitions with no proof), Example 1,		
3,5,		
Exercise 2-1.4 (2, 7), (Page No 111-115),		2.3, 2-3.1
Venn diagram, Exercise 2-1.5-2,		2-3.2, 2-3.3
Ordered pairs, and n-tuples, Cartesian product, example 1, 2,		2-3.5
Exercise 2-1-3,4 (Page No. 122-126)		

		1
Relations : Introduction, Example 1, Exercise 2-3.1-1 (Page		(exclude
No.148-151,153)		definition
Properties of a binary relation in a set, Exercise 2-3.2-5,		2-3.10, 2-
Example 1, 2,3 Relation matrix and graph of a relation, (Page		3.12,
No 154-159) equivalence relations, Example 1,2 (Page no.		2-3.15,
164-165), compatibility relations, composition of Binary		algorithm,
relation Example 1,2,3,4, (Page No 176-180)		and theorem
		2-3.1, 2-3.2)
UNIT II		
Partial Ordering: Definitions, lexicographic ordering,	Book -1	2-3.8,
partially ordered set, Hasse diagram, Example 1,2(a, b, c),3,		2-3.9,
well ordered set (definition 2-3.20) Exercise 2-3.9-1 (Page No.		
183-189,191)		2-4.1 to 2-4.3
Functions : Definition and introduction (except definition 2-		
4.2), Exercise 2-4.1-4,5,types of functions, composition of		
functions, Example 1,2, Inverse functions Example 1, 2,		
Exercise 2-4.3-4 (Page No 192-205) (Only Theorem	Book -2	6-1,
statements [no proofs])		6-2,
Counting : Basics of counting, (Product rule, sum rule, the		6-3
inclusion-exclusion principle), Example 1 to 5, 12, 13, 18, 19,		6.5
Exercise- 1, 2, 3, (Page No 385-393, 396), Pigeonhole		6.6
principle, (Only Theorem-1 statement), Example 1, 2, 3, (Page		
No 99-400), Permutation and combination, Example		
1,2,3,4,5,10, 12, 13 Exercise-1,4, (only theorem and corollary		
statements- no proof), Page No 407-413), Generalized		
Permutations and Combinations, Example 1,2,3,4, Theorem		
1 and 2(only statements) [Page no 423 to 425],(only theorem		
and corollary statements- no proof), Generating permutation		
and combination, Example 1 to 5,[Pg 434-438], inclusion and		
exclusion, Example 1,2 3 [Pg 552-554]		
UNIT III		
Discrete Probability:		7.1,
Introduction, finite probability, Example 1, 2, 4-6, (only	Book -2	7.2,
theorem statements-no proof), (Page No 445-448),		7.3,
probabilities of complements and unions of events (except		7.4
probability reasoning), Example 8, 9, (Page No 449-450),		
probability theory, Example 1, 2, (Page No 452-454),		
conditional probability, Example 3, 4, (Page no. 456-457),		
independence, Example 5,6,7 (except pairwise and mutual		
independence,		
		1

		I
Bernoulli Trials and the Binomial Distribution), (Page no. 457-		
458), Random variables, Example 10, 11, (Except Monte Carlo		
Algorithm and probabilistic method) (Page No 460), Baye's		
theorem(no proof), Example 2, 3,4, (Page No 470-474),		
Expected value and variance, Example 1,2,3 (Page No 477-		
479), (Except Linearity of Expectations, Average-Case		5.1
Computational Complexity, The Geometric Distribution),	Book-2	5.2
Independent random variables, Example 11, 13,15,16 (Page		
no 485-489) (except		
Chebyshevs inequality)		
Mathematical Induction : Induction, principle of		4.1
mathematical induction, Example 1, (Page No 311-313, 316),	Book -2	4.3
proving inequalities, Example 5, 6, (Page No 319-320), strong	DOOK -2	7.3
induction and well ordering (only statements), (Page No 334,		
341)		
Number Theory: Number Theory: Division election Example 1 2 4 5 7		
Number Theory: Division algorithm, Example 1, 3, 4, 5, 7		
Theorem 2, 3, Modular arithmetic, (Page No. 237-239, 241-		
243), Primes and greatest common divisors, Definitions		
1,2,3,5 Least common multiple, Example 1, 4, 10, 11, 12, 15,		
(Page No 257, 259, 265-266), The Euclidean algorithm,		
Example 16, Exercise 24, 32(a,b,c), (Page no. 267,272). (No		
theorems, lemma, corollary and proofs)		
UNIT IV		
Graphs : Graphs and Graph models (Only definitions with		
example figures, Page No 641-643), Graph Terminology and		
Special Types		
of Graphs, Examples 1, 3, 4, 5,6,7, (Page No. 651-655), (only	Book -2	10.1 to 10.8
theorem statements, no proof) (Except Bipartite Graphs,	DOOR 2	10.1 to 10.0
Some Applications of Special Types of Graphs), Example 18,		
19, (Page No 663-664), Representing Graphs and Graph		
Isomorphism, Example 1, 2, 3, 4, 5,6,7,8 (Page No. 668-672),		
Exercise (Page No 675-557) 1,3,5,7,10,13, Connectivity,		
(Page No 678-681,685- 686), Definition 1,2, 3, 4, 5, Example		
1,4,10 (Except all theorems and proofs of this section), Euler		
and Hamilton Paths, Definition 1, 2, Example 1,2,5 (Page No		
_		
693-699), (except necessary and sufficient conditions for		
Euler circuits and paths, exclude all theorems and proofs of		
this section), Shortest-Path Problems(Pg. 709-710), Planar		

Graphs- Introduction, all examples and Applications(Pg 718-720) Graph Coloring, Definition 1,2, Theorem 1(no proof), Example 1, (Page No. 727-729), Exercise 1,3 5,7, (Page No. 732).	Book -1	5.1-5.4
Trees : Directed tree, leaf node, branch node, ordered tree, degree of a node, forest, descendent, m-ary tree, conversion of directed tree into a binary tree. (Page No 494-500)	Book -3	Chapter 6 (complete)
Applications of Discrete Mathematics in Modelling	Doon 3	
Computation: Language and Grammars – Introduction,		
Phrase-Structured, Types, Derivation Trees; Finite State		
Machines with Output – Introduction, Finite State Machines,		
Types; Finite State Machines without Output - Introduction,		
Set of Strings, Finite State Automata, Language Recognition		
by FSM; Language Recognition – Introduction; Turing		
Machine – Introduction, Definition		

Text Books:

- 1. J.P. Trembley and R. Manobar, Discrete Mathematical Structures, McGraw Hill Education Private Limited, New Delhi,
- 2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, 2012.
- 3. C L Liu and D P Mohapatra, Elements of Discrete Mathematics- A Computer Oriented Approach, Fourth Edition, McGraw Hill Education Private Limited, New Delhi,

Reference Books:

- 1. D C Sanchethi and V K Kapoor, Business Mathematics, Eleventh Revised Edition, Sulthan Chand & Sons Educational publishers, New Delhi,
- 2. Narsingh Deo, Graph Theory with Applications to Engg and Comp. Sci, PHI, 1986.
- 3. Ralph P. Grimaldi, B. V. Ramatta, Discrete and Combinatorial Mathematics, 5th Edition, Pearson, Education
- 4. K Chandrashekhara Rao, Discrete Mathematics, Narosa Publishing House, New Delhi

Program Name	BCA	Semester	I
Course Title	Information Techno	logy Lab	
Course Code:	BCA-1.4	No.of Credits	02
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours
Formative Assessment Marks	10	Summative Assessment Marks	40

PART -A: MS WORD

1. Prepare a document using different formatting tools

Highlights of the National Education Policy (NEP) 2020

Note4Students

From UPSC perspective, the following things are important :

Prelims level: National Education Policy

Mains level: Need for imbibing competitiveness in Indian education system

- we Policy aims for universalization of education from pre-school to secondary level with 100 % Gross Enrolment Ratio (GER) in school education by 2030. NEP 2020 will bring 2 crores out of school children back into the mainstream through the open schooling system.

 * The current 10+2 system to be replaced by a new 5+3+3+4 curricular structure corresponding to ages 3-8, 8-11, 11-14, and 14-18 years respectively. This will bring the hitherto uncovered age groups of 3-6 years under the school curriculum, which has been recognized globally as the crucial stage for the development of mental faculties of a child.

 * The new system will have 12 years of schooling with three years of Anganwadi/ pre-schooling.

 Emphasis on Foundational Literacy and Numeracy, no rigid separation between academic streams, extracurricular, vocational streams in schools; Vocational Education to start from Class 6 with Internships

 Teaching up to at least Grade 5 to be in mother tongue/ regional language. No language
- - o Teaching up to at least Grade 5 to be in mother tongue/ regional language. No language will be imposed on any student.

 Assessment reforms with 360° Holistic Progress Card, tracking Student Progress for achieving
- Learning Outcomes
- A new and comprehensive National Curriculum Framework for Teacher Education, NCFTE 2021, will be formulated by the NCTE in consultation with NCERT.

 By 2030, the minimum degree qualification for teaching will be a 4-year integrated B.Ed. degree. Gross Enrolment Ratio in higher education to be raised to 50% by 2035; 3.5 crore seats to be raised to 50% by 2035; 3.5 crore seats to be
- added in higher education.

 The policy envisages broad-based, multi-disciplinary, holistic Under Graduate Program with flexible curricula, creative combinations of subjects, integration of vocational education and
- multiple entries and exit points with appropriate certification.

 Academic Bank of Credits to be established to facilitate Transfer of Credits

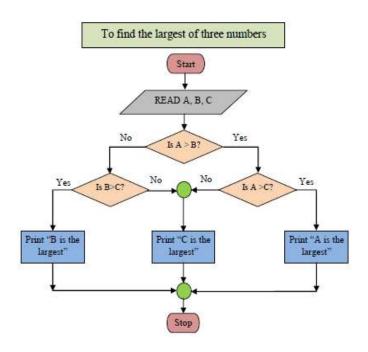
ultidisciplinary Education and Research Universities (MERUs), at par with IITs, IIMs, to be set up as models of best multidisciplinary education of

global standards in the country Affiliation of colleges is to be phased out in 15 years and a stage-wise mechanism is to be established for granting graded autonomy

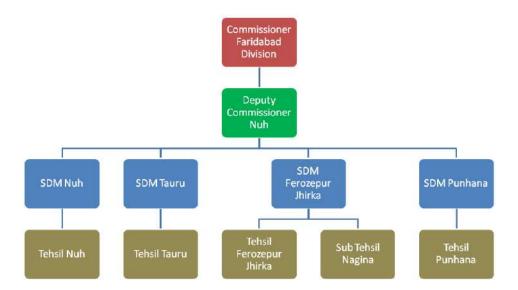
to colleges.

Over a period of time, it is envisaged that every college would develop into either an Autonomous degree-granting College or a constituent college of a university

$$\frac{df}{dt} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$


$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = (a+b)^{2} - 4ab$$


$$a^{2} + b^{2} = (a-b)^{2} + 2ab$$

$$a^2 + b^2 = (a - b)^2 + 2ab$$

2. Prepare a document using SmartArt and Shapes tools

Organization Chart – Administration Faridabad Division

3. Prepare a document with table to store sales details of a company for different quarters and calculate total, average and find maximum, minimum sales value.

Branch			Sales i	in Quarter	s		_
Code	Branch	1	2	3	4	Total	Avg
A101	Mangalore	354690	244610	383290	413670		
A102	Udupi						
Total	(Across Branches)						
Average	(Across Branches)						
Highest Sales (Across							
Branches)							
Lov	west Sales (Across						
	Branches)						

TIME TABLE

Class : I B	CA					Room No. 20
Day	I	п	ш	IV	V	VI
Monday						
Tuesday		0			EAK	
Wednesday					HBRE	
Thursday			8 8		ON ON O	
Friday			2			
Saturday		ý.	*			***

4. Prepare interview call letters for five candidates describing about the company and instructions about the interview. Use Mail merge feature

Interview call Letter Format

Date:

[Name of the candidate] [Address]

Dear Iname of the candidatel

This is to the reference of your application for the job Iname of the job indicating interest in seeking employment in our organisation. We thank you for the same.

We would like to inform you that your profile is being shortlisted for the job role and is best suited for it. Therefore, we would like to take a face to face interview with you on [date of interview] at [venue details].

We hope that the venue is suitable for you. If not please get in touch with us, so that we can arrange the date and venue according to your availability.

The company will reimburse you all the expenses incurred by you for this interview. This letter has an attachment in which you need to fill the details and carry it along on the date of interview. Please carry your CV also along with you.

Kindly confirm your availability for the date and venue. If there are any changes to be done, please contact us at phone number: [999xxxx999] and email id: abcnd@mail.com.

We look forward to seeing you.

Regards.
Name of the Manager
Designation Name
Company name

PART-B: MS POWERPOINT

- 1. Create a presentation (minimum 5 slides) about your college. It should contain images, chart, Bulleted text... The slides should be displayed automatically in a loop.
- 2. A simple quiz program. Use hyperlinks to move to another slide in the presentation to display the result and correct answer/wrong answer status. Use at least four questions.

[Navigation must be done by hyperlink]

- 3. Create a presentation for a business proposal (minimum 5 slides).
 - Slides must include company logo in header
 - A title slide with table of contents
 - financial data of the company in the table
 - Company sales and profit in charts
 - Make use of animation and transition
- 4. Create a presentation for a college project (minimum 5 slides).
 - Master slide
 - Add comments for each slide
 - Add Audio and video to the slide
 - Add header and footer.
 - Add source citation
 - Make use of animation and transition

[Presentation must include title slide, Module Design, Chart, references]

PART-C: MS EXCEL

(Note: Give proper titles, column headings for the worksheet. Insert 10 records for each exercise in such a way to get the result for all the conditions. Format the numbers appropriately wherever needed).

1. Create a worksheet to maintain student information such as RollNo, Name, Class, Marks in three subjects of 10 students. Calculate total marks, average and grade. Find grade for Distinction, First class, Second class, Pass and Fail using normally used conditions.

- Using custom sort, sort the data according to class: Distinction first, First Class next, and so on. Within each class, average marks should be in descending order.
- Also draw the Column Chart showing the RollNo versus Average scored.

(Note: Worksheet creation and formatting 3 marks, calculations: 3 marks, sorting: 2 marks, chart: 2 marks)

- 2. Prepare a worksheet to store details of electricity consumed by customers. Details are Customer No, Customer Name, Meter No, Previous meter reading, Current meter reading of 10 customers. Calculate total number of units consumed and total amount to be paid by each consumer using following conditions:
- If unit consumed is up to 30, charge is 100.
- 31 to 100 units, 4.70 per unit
- 101 to 200 units, 6.25 per unit
- Above 200 units, 7.30 per unit.
- Use Data validation to see that current reading is more than previous reading.
- Arrange the records in the alphabetic order of names.
- Filter the records whose bill amount is more than Rs.1500.

(Note: Worksheet creation and formatting 2 marks, Data validation: 2 marks, calculations: 2 marks, sorting: 2 marks, filtering: 2 marks)

- 3. Create Employee worksheet having EmpNo, EmpName, DOJ, Department, Designation and Basic Pay of 8 employees. Calculate DA, HRA, Gross Pay, Profession Tax, Net Pay, Provident Fund as per the rule:
- DA = 30% of basic pay
- HRA = 10% of basic pay if basic pay is less than 25000, 15% of basic pay otherwise.
- Gross =DA +HRA+ Basic pay
- Provident fund =12% of Basic pay or Rs.2000, whichever is less.

- Profession Tax= Rs. 100 if Gross pay is less than 10000, Rs. 200 otherwise.
- NetPay = Gross (Professional tax + Provident Fund)
- Using Pivot table, display the number of employees in each department and represent it using Pie chart.

(Note: Worksheet creation and formatting 2 marks, calculations: 3 marks, Pivot table: 3 marks, Chart: 2 marks)

4. Create a table COMMISSION containing the percentage of commission to be given to salesmen in different zones as follows:

Zone	Percentage
South	10
North	12.5
East	14
West	13

Create another table SALES in the same worksheet to store salesman name, zone name, place, name of the item sold, rate per unit, quantity sold. Calculate total sales amount of each salesman. Referring the COMMISSION table, write the formula to compute the commission to be given. (Hint: Use if function and absolute cell addresses)

Using advanced filtering show the result in other parts of the worksheet.

- Show the records of various zones separately.
- Show the records of only East and West zones.
- Display the details of the items sold more than 50, in South or North zones.

(Note: Worksheet creation and formatting: 2 marks, calculations: 2 marks, filtering: 6 marks)

PART-D: MS ACCESS

1. Create Employee database and table Emp using MS ACCESS with following Structure

Emp no	Ename	Designation	Dep tno	DOJ	Basic Salary
101	RAMESH	MANAGER	10	10/10/2000	25000
102	SMITHA	CLERK	12	12/5/1999	15000
103	DEVIKA	ATTENDER	10	11/9/2001	12000
104	RAJESH	HR	15	15/4/2000	12000
105	GIRISH	SUPERVISO R	12	6/11/2005	18000
106	SATHYA	DRIVER	16	11/9/2001	11000
107	MANOJ	SWEEPER	10	22/6/2006	8000
108	BHOOMI KA	SECURITY	15	12/5/1999	10500
109	KIRAN	CLERK	14	11/9/2001	15000
110	PRATHIK SHA	SUPERVISO R	10	8/8/2005	18000

Perform following operation:

- a) List all the Employees Who are working in Dept no.10
- b) List all the Employees who get less than 20000 Salary
- c) Update Salary by adding the increments as per the following:
 - i. 10% Increment in Basic Salary who get < 20000
 - ii. 5% Increment in Basic Salary who get >=20000.
- 2. Create the "Order" database and a table "Orderdtl" having following records:

Orde r No	Order Date	Order Item	Order Qty	Order Price	Client Code	Delivery Type	Order Status
1011	12/02/2 015	LED Monito rs	100	750000	1025	Road	Delivered
1012	12/03/2 015	CPU	12	500000	1026	SHIP	Not Delivered
1005	15/02/2 014	Keybo ard	80	48000	1027	Road	Delivered
1010	02/02/2 016	LED Monito rs	30	64000	1028	Flight	Delivered
1016	19/4/20 15	Scanne r	40	35000	1029	Road	Delivered
1009	9/05/20 18	LED Monito rs	25	125000	1030	Flight	Not Delivered
1008	13/8/20 17	CPU	25	450000	1031	SHIP	Delivered
1014	1/7/201 8	Printer	50	90000	1032	Road	Not Delivered

Execute following Query

a) Display all the Order No. which have not been yet Delivered.

- b) Display all the Orders of LED Monitor and CPU.
- c) Display all the Orders of LED Monitor and CPU which are not have been delivered yet.
- 3. Create a "Stock" database having "Inventory" table:

Item Cod e	Item Name	Opening Stock(Qty)	Purcha se(Qty)	Sale (Qty)	Closing Stock(Qty	Remark
101	MONITOR	100	25	35		
102	PRINTER	75	40	15		
103	SCANNER	120	30	20		
104	CPU	50	35	10		
105	KEYBOA RD	105	45	55		

Execute following Query

- a) Calculate the closing stock of each item (Closing Stock = Opening Stock + Purchase Sales)
- b) Display all the Items which has closing stock < 100
- c) If closing stock is less than 100 then set the remark as "Re-Order Level" otherwise "Enough Stock".
- 4. Create a "Company" database having "Sales" table with fields saleid, quarter, product, no_of_sales.

Perform the followings:

- a. Design a form to insert records to Sales table
- b. Generate a report to display Sales details of product based on quarters.

Evaluation Scheme for Lab Examination:

Assessment Criteria					
Program-1	MS WORD	8 Marks			
Program-2	MS POWERPOINT	7 Marks			
Program-3	MS EXCEL	10 Marks			
Program-4	MS ACCESS	10 Marks			
Practical Recor	d	05 Marks			
Total		40 Marks			

Program Name	BCA	Semester	Ι
Course Title	C Programming Lab		
Course Code:	BCA-1.5	No.of Credits	02
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours
Formative Assessment Marks	10	Summative Assessment Marks	40

PART - A

- 1. Program to find the roots of quadratic equation using else if ladder.
- 2. Program to read two integer values & a operator as character and perform basic arithmetic operations on them using switch case (+, -, *, / operations)
- 3. Program to reverse a number and find the sum of individual digits. Also check for palindrome.
- 4. Program to calculate and display the first 'n' Fibonacci numbers
- 5. Program to find given number is a prime or not.
- 6. Program to count occurrences of each character in a given string.
- 7. Program to read string with alphabets, digits and special characters and convert upper case letters to lower case and vice a versa and retain the digits and special characters as it is.
- 8. Program to search for number of occurrences of number in a list of numbers using one-dimensional array also display its positions.

PART-B

- 1. Program to find the largest and smallest elements with their position in a onedimensional array.
- 2. Program to read 'n' integer values into a single dimension array and arrange them in ascending order using bubble sort method.
- 3. Menu driven Program to perform addition and multiplication of two Matrices
- 4. Program to find nCr and nPr using recursive function to calculate factorial.
- 5. Program to read a string and count number of letters, digits, vowels, consonants, spaces and special characters present in it using user defined function
- 6. Program sort a list of strings in ascending order using Pointers

- 7. Program to enter the information of a student like name, register number, marks in three subjects into a structure and display total, average and grade Display details in a neat form.
- 8. Write a menu driven program to
 - a. Create a text file
 - b. Append the contents of a text file to another existing file by accepting filenames
 - c. Display the content of entered filename
 - d. Exit

Create two text files during the execution of the program. Display their contents. Perform Appending. Display the contents again. Always check for the existence of the inputted file names.

Evaluation Scheme for Lab Examination:

Assessment Crite	eria	
Program-1	PART-A Writing:7 Marks Execution:8Marks	15Marks
Program-2	PART-B Writing:10 Marks Execution:10 Marks	20 Marks
Practical Record		05 Marks
Total		40 Marks

MANGALORE UNIVERSITY

State Education Policy – 2024 ISEP-20241

BLOWNUP SYLLABUS AND PRACTICAL LIST FOR

II SEMESTER BCA-GENERAL

CURRICULUM STRUCTURE FOR II SEMESTER BCA-GENERAL

	Semester II							
Sl. No	Course Code	Title of the Course	Category of Courses	Teaching Hours per Week	SE E	IA	Total Mark s	Credits
1		Language-I	Lang	4	80	20	100	3
2		Language-II	Lang	4	80	20	100	3
3	BCA -2.1	Data Structures	Core	4	80	20	100	3
4	BCA -2.2	Object Oriented Programming using Java	Core	4	80	20	100	3
5	BCA -2.3	Computational Mathematics	Core	5	80	20	100	5
6	BCA -2.4	Data Structures Lab	practical	4	40	10	50	2
7	BCA -2.5	Object Oriented Programming Lab	practical	4	40	10	50	2
8		Constitution/Values	Compulsory	2	40	10	50	2
_	Sub - Total			31	520	130	650	23

Program Name	BCA	Semester	II		
Course Title	Data Structures(Theory)				
Course Code:	BCA-2.1	No.of Credits	03		
Contact hours	4 Hours per week	Duration of	3 Hours		
		SEA/Exam			
Formative	20	Summative	80		
Assessment		Assessment			
Marks		Marks			

Topics	Book	Chapter /Page No/Section	
UNIT 1[13	HOURS]		
Introduction to data structures:	Chapter-1	1.1 to 1.4	
Introduction, Basic terminology;			
Elementary Data Organization, Data			
Structures, Data Structure Operations			
Introduction to Algorithms, Preliminaries: Introduction, Algorithmic	Chapter-2	2.1,2.3,2.4	
notations, Control structure. Recursion: Definition; Recursion Technique Examples –Factorial, Fibonacci sequence, Towers of Hanoi.	Chapter-6	6.8,6.9(complexity excluded)	
Arrays: Basic Concepts – Definition, Declaration, Initialization, Operations on arrays, Types of arrays, Representation of Linear Arrays in memory, Traversing linear arrays, Inserting and deleting elements, Multidimensional arrays- Two Dimensional Arrays Representation of two- dimensional arrays, Sparse matrices. Sorting: Selection sort, Bubble sort, Quick sort, Insertion sort, Merge sort	Chapter-4 Chapter-9	4.1,4.2,4.4,4.5,4.6,4.10,4.17, 4.7, 6.7,9.1,9.3,9.4,9.6 (complexity excluded)	
UNIT 2[13 HOURS]			
Searching: Definition, Sequential Search,	Chapter-4	4.8(complexity excluded in	
Binary search	_	both 4.8 & 4.9),4.9,4.13)	

Dynamic memory management: Memory allocation and de-allocation functions - malloc, calloc, realloc and free. Linked list: Basic Concepts – Definition and Representation of linked list, Types of linked lists - Singly linked list, Doubly liked list, Header linked list, Circular linked list, Representation of Linked list in Memory; Operations on Singly linked lists—Traversing, Searching, Insertion, Deletion,	Chapter-5	5.1, to 5.11,
Memory allocation, Garbage collection		
UNIT 3[13	HOURS]	
Stacks: Basic Concepts –Definition and Representation of stacks- Array representation of stacks, Linked representation of stacks, Operations on stacks, Applications of stacks, Infix, postfix and prefix notations, Conversion from infix to postfix using stack, Evaluation of postfix expression using stack, Application of stack in function calls. Queues: Basic Concepts – Definition and Representation of queues- Array representation of Queues, Linked representation of Queues, Types of queues - Simple queues, Circular queues, Double ended queues, Priority queues, Operations on queues	Chapter-6	6.1,6.2,6.3,6.4,6.5,6.6,6.7, 6.10 6.11,6.12,6.13,6.14,6.15, 6.16(6.79,6.80,6.87 only),
UNIT 4[13	HOURS]	
Trees: Definition, Tree terminologies – node, root node, parent node, ancestors of a node, siblings, terminal & non-terminal nodes, degree of a node, level, edge, path, depth Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary	Chapter-7	7.1,7.2,7.3,7.4,7.5,7.8,7.9

search tree,;	Array representation			
tree, Travers	al of binary tree-	Chapter-8	8.1,8.2,8.3,8.5,8.7	
inorder and postorder traversal			1	, , , ,
Graphs:	Terminologies,	Matrix		
representation	n of graphs; Traversa	al: Breadth		
First Search a	and Depth first searc	h.		

Text Books:

1. Seymour Lipschutz, Data Structures with C, Schaum's Outlines Series, Tata McGraw Hill, 2011

Reference Books:

- 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Computer Science Press, 1982.
- 2. Aaron M. Tenenbaum, Data structures using C, First Edition, Pearson Education
- 3. Kamathane, Introduction to Data structures, Pearson Education, 2004
- 4. Y. Kanitkar, Data Structures Using C, Third Edition, BPB
- 5. Padma Reddy: Data Structure Using C, Revised Edition 2003, Sai Ram Publications.
- 6. Sudipa Mukherjee, Data Structures using C-1000 Problems and Solutions, McGraw Hill Education, 2007
- 7. R. Venkatesan and S. Lovelyn Rose, Data Structures, First Edition: 2015, Wiley India Pvt. Ltd. Publications

Program Name	BCA	Semester	II		
Course Title	Object Oriented Programming using Java(Theory)				
Course Code:	BCA-2.2	No.of Credits	03		
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours		
Formative	20	Summative	80		
Assessment		Assessment			
Marks		Marks			

Topics	Book	Chapter /Page
		No/Section
UNIT 1[13	HOURS]	
Fundamentals of Object Oriented	BOOK-1	1.1,1.2,1.3,1.4,1.5
Programming: Introduction, Object	Chapter-1	
Oriented Paradigm, Basic Concepts of		2.2,2.9,3.2,3.5,3.6,3.7,3.10
OOP, Benefits and Applications of OOP.	BOOK-1	
Introduction to Java: Java Features, Java	Chapter-2,	
Environment, Simple Java Program, Java	Chapter-3	4.2,4.3,4.4,4.5,4.6,4.7,4.8,
Program Structure, Java Tokens, Java	Chapter-3	4.9
Statements, Java Virtual Machine.	DOOK 1	4.9
Java Programming Basics: Constants,	BOOK-1	
Variables, Data Types, Declaration of variables, Giving values to the variable,	Chapter-4	
Scope of variables, Symbolic constants,		
Type casting.		
Operators and Expressions: Arithmetic		5.1,5.2,5.3,5.4,5.5,5.6,5.7,
Operators, Relational Operators, Logical	BOOK-1	5.9,5.15
Operators, Assignment Operator,	Chapter-5	
Increment and Decrement Operators,	•	
Conditional Operator, Special Operators,		
Mathematical functions.		
Using I/O: Byte streams and character	BOOK-2	P.No 285,286,288-292
streams, predefined streams, reading		1.110 283,280,288-292
console input, reading characters, strings,	Chapter-13	
writing console output.		

Decision Making & Branching : Simple if	BOOK-1	6.1 to 6.7			
statement, ifelse statement, nesting of	Chapter-6	0.1 to 0.7			
ifelse statement, the elseif ladder, the	Chapter 0				
Switch statement					
UNIT 2[13	HOURS]				
Decision making & Looping -The while	BOOK-1	7.1 to 7.6			
statement, the do statement, the for	Chapter-7				
statement. Jumps in loops, Labelled loops.	-				
Class & Objects - Class Fundamentals,	BOOK-2	P.No 105 to 120			
Declaring Objects, Assigning Object	Chapter-6,	1.110 103 to 120			
Reference Variables, Introducing	Chapter-0,				
Methods, Constructors, The 'this'	DOOK 2	D No. 125 to 122 124			
keyword, Overloading Methods, Using	BOOK-2	P.No 125 to 132,134-			
Objects as Parameters, Returning Objects, Recursion, Understanding 'static',	Chapter-7	136,141-143,150-152			
Recursion, Understanding 'static', Introducing 'final', Using Command-Line					
Arguments, Varargs: Variable-Length					
Arguments	BOOK-1	9.1 to 9.7			
Arrays and Strings: One dimensional	Chapter-9				
arrays, Creating an arrays, Two					
dimensional arrays, Strings, Vectors,					
Wrapper classes.					
UNIT 3[13	UNIT 3[13 HOURS]				
Inheritance - Inheritance Basics, Using		P.No 157 to 173,177 to 180			
'super', Creating Multilevel hierarchy,	Chapter-8				
Method Overriding, Using Abstract					
Classes, Using final with Inheritance.	BOOK-2	P.No 183 to 194			
Packages & Interfaces - Packages,	Chapter-9				
Access protection in packages, Importing	T				
Packages, Interfaces.	BOOK-2	P.No 205 to 210,216-218			
Exception Handling - Exception Handling Fundamentals - Exception					
Types, Uncaught Exceptions, Using try	Chapter-10				
and catch, Multiple catch clauses, finally,					
Java's builtin Exceptions					
1					

UNIT 4[13	UNIT 4[13 HOURS]				
Multithreaded Programming-	BOOK-1				
Introduction, Creating threads, Extending	Chapter-12	12.1 to 12.6,12.10			
the thread class, stopping & blocking	-				
thread, Life cycle of a thread, Using thread					
methods, Implementing the runnable					
interface.					
Event and GUI programming: The					
Applet Class, Types of Applets, Applet					
Basics, Applet Architecture, An Applet		DN 617 - 625 620 620			
Skeleton, Simple Applet Display Methods,	Book 2	P.No 617 to 625,629-630			
Requesting Repaint, The HTML APPLET	Chapter 21				
tag. Event Handling - The delegation event					
model, Event Classes ActionEvent,					
KeyEvent & MouseEvent Classes, Event	Book 2				
Listener Interfaces —ActionListener,	Chapter 22	P.No 637 to 641, 645-			
KeyListener & MouseListener interfaces.	1	646,650-658			
Using the Delegation Event Model.		,			
Window Fundamentals, Working with	Book 2				
Frame Windows, Creating a Frame					
Window in an Applet. Creating a	Chapter 23	P.No 666-676			
Windowed Program, Displaying					
information within a window.					
Introducing swing – two key swing	Book 2	D.V. 0.50 0.50 0.55 0.55			
features, components and containers, the	Chapter 29	P.No 859-860,862-865,868			
swing packages, a simple swing					
application, event handling.					
Exploring Swing- Jlabel, JTextField, JButton, Checkboxes, Radio buttons, Jlist	Book 2	P.No 879 to 885,887 to			
, JComboBox.	Chapter 30	891,895-900			
, scomoobox.	•	071,075-700			
m (D)					

Text Books:

- 1. E Balagurusamy, Programming with Java A Primer, Fourth Edition, Tata McGraw Hill Education Private Limited.
- 2. Herbert Schildt, Java : The Complete Reference, Seventh Edition, McGraw Hill Publication.

Reference Books:

- 1. Herbert Schildt, Java 2-The Complete Reference, Fifth Edition, McGraw Hill publication.
- 2. CayS. Horstmann, Core Java VolumeI–Fundamentals, Prentice Hall.
- 3. Somashekara, M.T., Guru, D.S., Manjunatha, K.S, Object Oriented Programming with Java, EEE Edition, PHI.

Program Name	BCA	Semester	II		
Course Title	Computational Mathematics (Theory)				
Course Code:	BCA-2.3	No.of Credits	05		
Contact hours	5 Hours per week	Duration of SEA/Exam	3 Hours		
Formative Assessment Marks	20	Summative Assessment Marks	80		

Topic	Book	Section			
UNIT I					
Errors in Numerical Computation –	Chapter - 1	Explanation - 1.4 (Two types of			
Errors and their computation.		errors), 1.4.1 (Formula of			
		Absolute, Relative and			
		Percentage errors).			
		Examples – 1.2, 1.3, 1.5			
Solutions of Algebraic and	Chapter - 2				
Transcendental equations –					
Introduction,					
The Bisection method,					
		Explanation $-2.1, 2.2$			
The Iterative method,		(Examples - 2.1, 2.2)			
		Explanation 2.3 (Excluding			
The method of False position,		theorem),			
Newton-Raphson method,		(Examples - 2.5, 2.6)			
		Explanation 2.4, (Example – 2.8)			
Ramanujan's method.		Explanation 2.5 (till equation			
		2.22), (Examples – 2.9 , 2.10).			
Interpolation –	Chapter - 3	2.6 (Explanation only)			
Introduction,					
		Definitions of Interpolation and			
Finite differences,		Extrapolation -3.1 . Explanation			

Forward differences,				
Backward differences,		Explanation – 3.3		
Central differences,		Explanation 3.3.1,		
Central differences,		Explanation – 3.3.1, Explanation – 3.3.2,		
Newton's formula for internalation		Explanation – 3.3.2, Explanation – 3.3.3		
Newton's formula for interpolation,		Explanation – 5.5.5		
		Derivation – 3.6.		
Lagranga's interpolation formula		(Examples – 3.4, 3.5, 3.6, 3.7)		
Lagrange's interpolation formula,		1		
		(Exercise – 5, 7, 8).		
Divided differences		Explanation – 3.9.1 (Derivation,		
Divided differences,		Examples – 3.15, 3.17)		
		(Exercise 25, 26, 30).		
Norman's seemand intermediation for 1		Explanation – 3.11 (Only		
Newton's general interpolation formula.		equations 3.102, 3.104 and		
		3.105).		
		D : :: 2.11.1 /F 1		
		Derivation – 3.11.1 (Examples		
		3.23, 3.24)		
	UNIT II	F 1 3 41 42 421		
Least Squares – Introduction,	Chapter - 4	Explanation – 4.1, 4.2, 4.2.1.		
Least squares curve fitting procedures,		4.2.2		
Fitting a straight line,		(Examples – 4.1, 4.2, 4.3, 4.4)		
Numerical Differentiation and	Chapter 5			
	Chapter - 5	Explanation – 5.1, Derivation –		
Integration –		1		
		5.2 (Examples – 5.1, 5.2, 5.3)		
Name and and Difference of the second		(Exercise – 3, 5)		
Numerical Differentiation,		Explanation – 5.4		
Numerical Integration,		Explanation – 5.4.1 (Example –		
Trapezoidal Rule,		5.7)		
Simpson's 1/3 Rule,		Explanation – 5.4.2 (Examples –		
Simpson's 3/8 Rule.		5.9, 5.11)		
		Explanation – 5.4.3		
		(Exercise – 10, 11, 12)		
	UNIT III			
Matrices and Linear System of	Chapter - 6	E describe 62		
equations –		Explanation – 6.2,		
Basic definitions,		Explanation – 6.2.1, (Example –		
Matrix operations,		6.1)		
Transpose of a Matrix,				

The Inverse of a Matrix, Matrix norms		Explanation – 6.2.2, (Examples – 6.2, 6.3, 6.4) Explanation – 6.2.3, (Example – 6.5)
Solution of Linear System-Direct Methods Matrix Inversion Method		Explanation – 6.2.6 (only Matrix norms), (Example – 6.9).
Gaussian Elimination Method, Gauss-Jordan Method LU Decomposition		Derivation – 6.3.1, (Example – 6.10) Derivation – 6.3.2, (Example –
Le Decomposition		6.11)
Solution of Linear System-Iterative Methods Gauss-Seidel Method, Jacobi's Method.		Derivation – 6.3.4, (Example – 6.13)
		Explanation – 6.4, (Example – 6.19)
		(Exercise – 1, 2, 3, 5, 9, 10, 14(a))
1	UNIT IV	- 1(0/)
Numerical Solution of Ordinary	Chapter - 7	
Differential Equations –		
Solution by Taylor's Series		Explanation – 7.2, (Example –
Euler's Method		7.1)
Modified Euler's Method Runge-Kutta Method		Explanation – 7.4, (Example – 7.4)
Predictor-Corrector method		Explanation – 7.4.2, (Example – 7.6)
Adams-Moulton Method		Explanation – 7.5 (No
Milne's Method		derivation), (Example – 7.7)
Boundary Value Problems		Explanation – 7.6
Finite-Difference Method		Derivation – 7.6.1, (Example –
		7.10)
		Derivation – 7.6.2, (Example – 7.11)
		Explanation – 7.10
		Explanation – 7.10.1 (No
		Derivation), (Example -7.13)

(Exercise – 1, 6, 7, 10, 14, 20)

Text Book:

1. S.S. Sastry, Numerical Analysis, 3rd edition, PHI publication.

Reference Books:

- 1. M. K. Jain, S.R.K. Iyengar & R. K. Jain, Numerical methods for Scientific and Engineering computation, 5th edition, New Age International publishers.
- 2. V Rajaraman, Computer Oriented Numerical Methods, 3rd Edition, PHI, 2006

Program Name	BCA	Semester	II
Course Title	Data Structures Lab		
Course Code:	BCA-2.4	No.of Credits	02
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours
Formative	10	Summative	40
Assessment		Assessment	
Marks		Marks	

PART-A

- 1. Program to sort the given list using selection sort technique.
- 2. Program to sort the given list using insertion sort technique
- 3. Program to solve Tower of Hanoi using Recursion
- 4. Program to sort the given list using merge sort technique.
- 5. Program to sort the given list using quick sort technique
- 6. Program to search an element using recursive binary search technique.
- 7. Program to implement Stack operations using arrays.
- 8. Program to implement Queue operations using arrays.

PART-B

- 1. Program to implement circular queue using array.
- 2. Program to implement Stack operations using linked list.
- 3. Program to implement Queue operations using linked list.
- 4. Program to evaluate given postfix expression.
- 5. Program to covert the given infix expression to postfix expression.
- 6. Program to perform insert node at the end, delete a given node and display contents of single linked list.
- 7. Menu driven program for the following operations on Binary Search Tree(BST) of Integers
 - (a) Create a BST of N Integers
 - (b) Traverse the BST in Inorder, Preorder and Post Order
- 8. Program for the following operation on the graph (G) of cities
 - (a) Create a graph of N cities using Adjacency Matrix
 - (b)Print all the nodes reachable from a given starting node in a diagraph using BFS method

Evaluation Scheme for Lab Examination:

Assessment Crit	eria	
Program-1	PART-A	15 Marks
	Writing:7 Marks Execution: 8Marks	
Program-2	PART-B	20 Marks
J	Writing:10 Marks Execution:10Marks	
Practical Record	d	05 Marks
Total		40Marks

Program Name	BCA	Semester	II
Course Title	Object Oriented Programming Lab		
Course Code:	BCA-2.5	No.of Credits	02
Contact hours	4 Hours per week	Duration of SEA/Exam	3 Hours
Formative Assessment Marks	10	Summative Assessment Marks	40

PART-A

- 1. Program to accept student name and marks in three subjects. Find the total marks, average and grade (depending on the average marks).
- 2. Program, which reads two numbers having same number of digits. The program outputs the sum of product of corresponding digits. (Hint Input 327 and 539 output 3x5+2x3+7x9=84)
- 3. Program to input Start and End limits and print all Fibonacci numbers between the ranges.(Use for loop)
- 4. Define a class named Pay with data members String name, double salary, double da, double hra, double pf, double grossSal, double netSal and methods: Pay(String n, double s) Parameterized constructor to initialize the data members, void calculate() to calculate the following salary components, and void display() to display the employee name, salary and all salary components.

Dearness Allowance = 15% of salary

House Rent Allowance = 10% of salary

Provident Fund = 12% of salary

Gross Salary = Salary + Dearness Allowance + House Rent Allowance

Net Salary = Gross Salary - Provident Fund

Write a main method to create object of the class and call the methods to compute and display the salary details. [class basics]

- 5. Program to create a class DISTANCE with the data members feet and inches. Use a constructor to read the data and a member function Sum () to add two distances by using objects as method arguments and show the result. (Input and output of inches should be less than 12.).
- 6. Program to create a class "Matrix" that would contain integer values having varied numbers of columns for each row. Print row-wise sum.
- 7. Program to extract portion of character string and print extracted string. Assume that 'n' characters extracted starting from mth character position.
- 8. Program to add, remove and display elements of a Vector.

PART-B

- 1. Create a class named 'Member' having data members: Name, Age, PhoneNumber, Place and Salary. It also has a method named 'printSalary' which prints the salary of the members. Two classes 'Employee' and 'Manager' inherit the 'Member' class. The 'Employee' and 'Manager' classes have data members 'specialization' and 'department' respectively. Now, assign name, age, phone number, address and salary to an employee and a manager by making an object of both of these classes and print the same. [inheritance]
- 2. Program to implement the following class hierarchy: Student: id, name StudentExam (derived from Student): Marks of 3subjects, total marks StudentResult (derived from StudentExam): percentage, grade Define appropriate methods to accept and calculate grade based on existing criteria and display details of N students
- 3. Write a Program to calculate marks of a student using multiple inheritance implemented through interface. Class Student with data members rollNo, name, Stringcls and methods to set and put data.

Create another class test extended by class Student with data members mark1, mark2, mark3 and methods to set and put data.

Create interface sports with members sportsWt = 5 and putWt().

Now let the class results extends class test and implements interface sports. Write a Java program to read required data and display details in a neat format.

- 4. Write a Program to create an abstract class named shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Ellipse such that each one of the classes extends the class shape. Each one of the class contains only the method print Area() that print the area of the given shape. [Abstract class].
- 5. Create a package to convert temperature in centigrade into Fahrenheit, and one more package to calculate the simple Interest. Implement both package in the Main () by accepting the required inputs for each application.
- 6. Write a Program that implements a multi-threaded program has three threads. First thread generates a random integer every second, and if the value is even, second thread computes the square of the number and prints. If the value is odd the third thread will print the value of cube of the number.[Multithreading]
- 7. Program that creates a user interface to perform basic integer operations.

The user enters two numbers in the TextFields - Num1 and Num2. The result of operations must be displayed in the Result TextField when the "=" button is clicked. Appropriate Exception handling message to be displayed in the Result TextFieldwhen Num1 or Num2 is not an integer or Num2 is Zero when division operation is applied.

8. Using the swing components, design the frame for shopping a book that accepts book code, book name, and Price. Calculate the discount on code as follows.

Code	Discount rate
101	15%
102	20%
103	25%
Any other	5%

Find the discount amount and Net bill amount. Display the bill.

Evaluation Scheme for Lab Examination:

Assessment Crit	teria	
Program-1	PART-A	15 Marks
	Writing:7 Marks Execution: 8Marks	
Program-2	PART-B	20 Marks
	Writing:10 Marks Execution:10Marks	
Practical Record	d	05 Marks
Total		40 Marks